首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Empirical likelihood-based inference for the nonparametric components in additive partially linear models is investigated. An empirical likelihood approach to construct the confidence intervals of the nonparametric components is proposed when the linear covariate is measured with and without errors. We show that the proposed empirical log-likelihood ratio is asymptotically standard chi-squared without requiring the undersmoothing of the nonparametric components. Then, it can be directly used to construct the confidence intervals for the nonparametric functions. A simulation study indicates that, compared with a normal approximation-based approach, the proposed method works better in terms of coverage probabilities and widths of the pointwise confidence intervals.  相似文献   

2.
A non-Bayesian predictive approach for statistical calibration is introduced. This is based on particularizing to the calibration setting the general definition of non-Bayesian (or frequentist) predictive probability density proposed by Harris [Predictive fit for natural exponential families, Biometrika 76 (1989), pp. 675–684]. The new method is elaborated in detail in case of Gaussian linear univariate calibration. Through asymptotic analysis and simulation results with moderate sample size, it is shown that the non-Bayesian predictive estimator of the unknown parameter of interest in calibration (commonly, a substance concentration) favourably compares with previous estimators such as the classical and inverse estimators, especially for extrapolation problems. A further advantage of the non-Bayesian predictive approach is that it provides not only point estimates but also a predictive likelihood function that allows the researcher to explore the plausibility of any possible parameter value, which is also briefly illustrated. Furthermore, the introduced approach offers a general framework that can be applied for calibrating on the basis of any parametric statistical model, so making it potentially useful for nonlinear and non-Gaussian calibration problems.  相似文献   

3.
There are many approaches in the estimation of spectral density. With regard to parametric approaches, different divergences are proposed in fitting a certain parametric family of spectral densities. Moreover, nonparametric approaches are also quite common considering the situation when we cannot specify the model of process. In this paper, we develop a local Whittle likelihood approach based on a general score function, with some special cases of which, the approach applies to more applications. This paper highlights the effective asymptotics of our general local Whittle estimator, and presents a comparison with other estimators. Additionally, for a special case, we construct the one-step ahead predictor based on the form of the score function. Subsequently, we show that it has a smaller prediction error than the classical exponentially weighted linear predictor. The provided numerical studies show some interesting features of our local Whittle estimator.  相似文献   

4.
A critical step for geostatistical prediction is estimation of variogram from the data. One of the popular methods estimating variogram is a smoothed version of classical nonparametric variogram estimator. In this paper we investigate its theoretical and empirical properties to provide useful information for using it. The main results are based on asymptotic theories (i.e., risk and central limit theorem) under nearly infill domain sampling. Simulation is also employed to make our points.  相似文献   

5.
The popular empirical likelihood method not only has a convenient chi-square limiting distribution but is also Bartlett correctable, leading to a high-order coverage precision of the resulting confidence regions. Meanwhile, it is one of many nonparametric likelihoods in the Cressie–Read power divergence family. The other likelihoods share many attractive properties but are not Bartlett correctable. In this paper, we develop a new technique to achieve the effect of being Bartlett correctable. Our technique is generally applicable to pivotal quantities with chi-square limiting distributions. Numerical experiments and an example reveal that the method is successful for several important nonparametric likelihoods.  相似文献   

6.
A nonparametric method based on the empirical likelihood is proposed to detect the change-point in the coefficient of linear regression models. The empirical likelihood ratio test statistic is proved to have the same asymptotic null distribution as that with classical parametric likelihood. Under some mild conditions, the maximum empirical likelihood change-point estimator is also shown to be consistent. The simulation results show the sensitivity and robustness of the proposed approach. The method is applied to some real datasets to illustrate the effectiveness.  相似文献   

7.
The present paper discusses how nonparametric tests can be deduced from statistical functionals. Efficient and asymptotically most powerful maximin tests are derived. Their power function is calculated under implicit alternatives given by the functional for one – and two – sample testing problems. It is shown that the asymptotic power function does not depend on the special implicit direction of the alternatives but only on quantities of the functional. The present approach offers a nonparametric principle how to construct common rank tests as the Wilcoxon test, the log rank test, and the median test from special two-sample functionals. In addition it is shown that studentized permutation tests yield asymptotically valid tests for certain extended null hypotheses given by functionals which are strictly larger than the common i.i.d. null hypothesis. As example tests concerning the von Mises functional and the Wilcoxon two-sample test are treated.  相似文献   

8.
A parametric marginal structural model (PMSM) approach to Causal Inference has been favored since the introduction of MSMs by Robins [1998a. Marginal structural models. In: 1997 Proceedings of the American Statistical Association. American Statistical Association, Alexandria, VA, pp. 1–10]. We propose an alternative, nonparametric MSM (NPMSM) approach that extends the definition of causal parameters of interest and causal effects. This approach is appealing in practice as it does not require correct specification of a parametric model but instead relies on a working model which can be willingly misspecified. We propose a methodology for longitudinal data to generate and estimate so-called NPMSM parameters describing so-called nonparametric causal effects and provide insight on how to interpret these parameters causally in practice. Results are illustrated with a point treatment simulation study. The proposed NPMSM approach to Causal Inference is compared to the more typical PMSM approach and we contribute to the general understanding of PMSM estimation by addressing the issue of PMSM misspecification.  相似文献   

9.
Abstract.  A useful tool while analysing spatial point patterns is the pair correlation function (e.g. Fractals, Random Shapes and Point Fields, Wiley, New York, 1994). In practice, this function is often estimated by some nonparametric procedure such as kernel smoothing, where the smoothing parameter (i.e. bandwidth) is often determined arbitrarily. In this article, a data-driven method for the selection of the bandwidth is proposed. The efficacy of the proposed approach is studied through both simulations and an application to a forest data example.  相似文献   

10.
This paper studies the estimation of a density in the convolution density model from strong mixing observations. The ordinary smooth case is considered. Adopting the minimax approach under the mean integrated square error over Besov balls, we explore the performances of two wavelet estimators: a linear one based on projections and a non-linear one based on a hard thresholding rule. The feature of the non-linear one is to be adaptive, i.e., it does not require any prior knowledge of the smoothness class of the unknown density in its construction. We prove that it attains a fast rate of convergence which corresponds to the optimal one obtained in the standard i.i.d. case up to a logarithmic term.  相似文献   

11.
This article considers analyzing longitudinal binary data semiparametrically and proposing GEE-Smoothing spline in the estimation of parametric and nonparametric components. The method is an extension of the parametric generalized estimating equation to semiparametric. The nonparametric component is estimated by smoothing spline approach, i.e., natural cubic spline. We use profile algorithm in the estimation of both parametric and nonparametric components. Properties of the estimators are evaluated by simulation.  相似文献   

12.
We propose a general family of nonparametric mixed effects models. Smoothing splines are used to model the fixed effects and are estimated by maximizing the penalized likelihood function. The random effects are generic and are modelled parametrically by assuming that the covariance function depends on a parsimonious set of parameters. These parameters and the smoothing parameter are estimated simultaneously by the generalized maximum likelihood method. We derive a connection between a nonparametric mixed effects model and a linear mixed effects model. This connection suggests a way of fitting a nonparametric mixed effects model by using existing programs. The classical two-way mixed models and growth curve models are used as examples to demonstrate how to use smoothing spline analysis-of-variance decompositions to build nonparametric mixed effects models. Similarly to the classical analysis of variance, components of these nonparametric mixed effects models can be interpreted as main effects and interactions. The penalized likelihood estimates of the fixed effects in a two-way mixed model are extensions of James–Stein shrinkage estimates to correlated observations. In an example three nested nonparametric mixed effects models are fitted to a longitudinal data set.  相似文献   

13.
ABSTRACT

Empirical likelihood (EL) is a nonparametric method based on observations. EL method is defined as a constrained optimization problem. The solution of this constrained optimization problem is carried on using duality approach. In this study, we propose an alternative algorithm to solve this constrained optimization problem. The new algorithm is based on a newton-type algorithm for Lagrange multipliers for the constrained optimization problem. We provide a simulation study and a real data example to compare the performance of the proposed algorithm with the classical algorithm. Simulation and the real data results show that the performance of the proposed algorithm is comparable with the performance of the existing algorithm in terms of efficiencies and cpu-times.  相似文献   

14.
It is well-known that the nonparametric maximum likelihood estimator (NPMLE) may severely under-estimate the survival function with left truncated data. Based on the Nelson estimator (for right censored data) and self-consistency we suggest a nonparametric estimator of the survival function, the iterative Nelson estimator (INE), for arbitrarily truncated and censored data, where only few nonparametric estimators are available. By simulation we show that the INE does well in overcoming the under-estimation of the survival function from the NPMLE for left-truncated and interval-censored data. An interesting application of the INE is as a diagnostic tool for other estimators, such as the monotone MLE or parametric MLEs. The methodology is illustrated by application to two real world problems: the Channing House and the Massachusetts Health Care Panel Study data sets.  相似文献   

15.
Piotr Sielski 《Statistics》2013,47(3):539-551
If a family of measures is dominated by a σ-finite measure, then the classical Fisher formulation of sufficiency and the pairwise sufficiency coincide. However, in undominated models, these definitions are essentially different. In particular, the Fisher formulation lacks the basic property: if a σ-algebra is sufficient, then also any larger σ-algebra ? is sufficient. We introduce a new definition of sufficiency, based on the concept of randomization, which has the property described above. We show that in the undominated case, our definition implies pairwise sufficiency and that the converse does not hold. If we assume that the underlying measurable space is a standard Borel space, then Fisher sufficiency implies our new formulation, and the converse implication does not hold.  相似文献   

16.
Summary.  The purpose of the paper is to propose a frequency domain approach for irregularly spaced data on R d . We extend the original definition of a periodogram for time series to that for irregularly spaced data and define non-parametric and parametric spectral density estimators in a way that is similar to the classical approach. Introduction of the mixed asymptotics, which are one of the asymptotics for irregularly spaced data, makes it possible to provide asymptotic theories to the spectral estimators. The asymptotic result for the parametric estimator is regarded as a natural extension of the classical result for regularly spaced data to that for irregularly spaced data. Empirical studies are also included to illustrate the frequency domain approach in comparisons with the existing spatial and frequency domain approaches.  相似文献   

17.
Abstract: The authors address the problem of estimating an inter‐event distribution on the basis of count data. They derive a nonparametric maximum likelihood estimate of the inter‐event distribution utilizing the EM algorithm both in the case of an ordinary renewal process and in the case of an equilibrium renewal process. In the latter case, the iterative estimation procedure follows the basic scheme proposed by Vardi for estimating an inter‐event distribution on the basis of time‐interval data; it combines the outputs of the E‐step corresponding to the inter‐event distribution and to the length‐biased distribution. The authors also investigate a penalized likelihood approach to provide the proposed estimation procedure with regularization capabilities. They evaluate the practical estimation procedure using simulated count data and apply it to real count data representing the elongation of coffee‐tree leafy axes.  相似文献   

18.
Nonparametric control charts are useful in statistical process control (SPC) when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate SPC methodology for monitoring location parameter based on adapting a well-known nonparametric method, empirical likelihood (EL), to on-line sequential monitoring. The weighted version of EL ratio test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control (EWMA) scheme, which results in a nonparametric counterpart of the classical multivariate EWMA (MEWMA). Some theoretical and numerical studies show that benefiting from using EL, the proposed chart possesses some favorable features. First, it is a data-driven scheme and thus is more robust to various multivariate non-normal data than the MEWMA chart under the in-control (IC) situation. Second, it is transformation-invariant and avoids the estimation of covariance matrix from the historical data by studentizing internally, and hence its IC performance is less deteriorated when the number of reference sample is small. Third, in comparison with the existing approaches, it is more efficient in detecting small and moderate shifts for multivariate non-normal process.  相似文献   

19.
When finite mixture models are used to fit data, it is sometimes important to estimate the number of mixture components. A nonparametric maximum-likelihood approach may result in too many support points and, in general, does not yield a consistent estimator. A penalized likelihood approach tends to produce a fit with fewer components, but it is not known whether that approach produces a consistent estimate of the number of mixture components. We suggest the use of a penalized minimum-distance method. It is shown that the estimator obtained is consistent for both the mixing distribution and the number of mixture components.  相似文献   

20.
In nonparametric regression the smoothing parameter can be selected by minimizing a Mean Squared Error (MSE) based criterion. For spline smoothing one can also rewrite the smooth estimation as a Linear Mixed Model where the smoothing parameter appears as the a priori variance of spline basis coefficients. This allows to employ Maximum Likelihood (ML) theory to estimate the smoothing parameter as variance component. In this paper the relation between the two approaches is illuminated for penalized spline smoothing (P-spline) as suggested in Eilers and Marx Statist. Sci. 11(2) (1996) 89. Theoretical and empirical arguments are given showing that the ML approach is biased towards undersmoothing, i.e. it chooses a too complex model compared to the MSE. The result is in line with classical spline smoothing, even though the asymptotic arguments are different. This is because in P-spline smoothing a finite dimensional basis is employed while in classical spline smoothing the basis grows with the sample size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号