首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

This paper discusses the detailed performance of an iterative plug-in (IPI) bandwidth selector for estimating the diurnal duration pattern in a Semi-ACD (semiparametric autoregressive conditional duration) model. For this purpose a large simulation study was carried out. The effects of different factors, which affect the selected bandwidth are discussed in detail. The simulated results and data examples show that the proposed IPI algorithm works very well in practice and that the Semi-ACD model in general is clearly superior to the parametric ACD model, if there is a deterministic trend in the duration data. It is also shown that the bandwidth selection, and the estimation of the diurnal pattern and the model parameters will all be clearly improved, if the sample size is enlarged. According to the goodness-of-fit of the estimated diurnal pattern, a best combination of the above-mentioned factors is found. Moreover, a comparative study shows that our proposal usually outperforms the commonly used cubic spline.  相似文献   

2.
The problem addressed is that of smoothing parameter selection in kernel nonparametric regression in the fixed design regression model with dependent noise. An asymptotic expression of the optimum bandwidth parameter has been obtained in recent studies, where this takes the form h = C 0 n ?1/5. This paper proposes to use a plug-in methodology, in order to obtain an optimum estimation of the bandwidth parameter, through preliminary estimation of the unknown value of C 0.  相似文献   

3.
We first describe the time series modeling problem in a general way. Then some specific assumptions and observations which are pertinent to the application of these models are made. We next propose a specific approach to the modeling problem, one which yields efficient, easily calculated estimators of all parameters (under the stated assumptions). Finally, the technique is applied to the problem of modeling the census of a particular hospital.  相似文献   

4.
Summary.  Semiparametric time series regression is often used without checking its suitability, resulting in an unnecessarily complicated model. In practice, one may encounter computational difficulties caused by the curse of dimensionality. The paper suggests that to provide more precise predictions we need to choose the most significant regressors for both the parametric and the nonparametric time series components. We develop a novel cross-validation-based model selection procedure for the simultaneous choice of both the parametric and the nonparametric time series components, and we establish some asymptotic properties of the model selection procedure proposed. In addition, we demonstrate how to implement it by using both simulated and real examples. Our empirical studies show that the procedure works well.  相似文献   

5.
The author considers serial correlation testing in seasonal time series models. He proposes a test statistic based on a spectral approach. Many tests of this type rely on kernel-based spectral density estimators that assign larger weights to low order lags than to high ones. Under seasonality, however, large autocorrelations may occur at seasonal lags that classical kernel estimators cannot take into account. The author thus proposes a test statistic that relies on the spectral density estimator of Shin (2004), whose weighting scheme is more adapted to this context. The distribution of his test statistic is derived under the null hypothesis and he studies its behaviour under fixed and local alternatives. He establishes the consistency of the test under a general fixed alternative. He also makes recommendations for the choice of the smoothing parameters. His simulation results suggest that his test is more powerful against seasonality than alternative procedures based on classical weighting schemes. He illustrates his procedure with monthly statistics on employment among young Americans.  相似文献   

6.
We propose a modification of local polynomial estimation which improves the efficiency of the conventional method when the observation errors are correlated. The procedure is based on a pre-transformation of the data as a generalization of the pre-whitening procedure introduced by Xiao et al. [(2003), ‘More Efficient Local Polynomial Estimation in Nonparametric Regression with Autocorrelated Errors’, Journal of the American Statistical Association, 98, 980–992]. While these authors assumed a linear process representation for the error process, we avoid any structural assumption. We further allow the regressors and the errors to be dependent. More importantly, we show that the inclusion of both leading and lagged variables in the approximation of the error terms outperforms the best approximation based on lagged variables only. Establishing its asymptotic distribution, we show that the proposed estimator is more efficient than the standard local polynomial estimator. As a by-product we prove a suitable version of a central limit theorem which allows us to improve the asymptotic normality result for local polynomial estimators by Masry and Fan [(1997), ‘Local Polynomial Estimation of Regression Functions for Mixing Processes’, Scandinavian Journal of Statistics, 24, 165–179]. A simulation study confirms the efficiency of our estimator on finite samples. An application to climate data also shows that our new method leads to an estimator with decreased variability.  相似文献   

7.
ABSTRACT

Singular spectrum analysis (SSA) is a relatively new method for time series analysis and comes as a non-parametric alternative to the classical methods. This methodology has proven to be effective in analysing non-stationary and complex time series since it is a non-parametric method and do not require the classical assumptions over the stationarity or over the normality of the residuals. Although SSA have proved to provide advantages over traditional methods, the challenges that arise when long time series are considered, make the standard SSA very demanding computationally and often not suitable. In this paper we propose the randomized SSA which is an alternative to SSA for long time series without losing the quality of the analysis. The SSA and the randomized SSA are compared in terms of quality of the model fit and forecasting, and computational time. This is done by using Monte Carlo simulations and real data about the daily prices of five of the major world commodities.  相似文献   

8.
This work presents a framework of dynamic structural models with covariates for short-term forecasting of time series with complex seasonal patterns. The framework is based on the multiple sources of randomness formulation. A noise model is formulated to allow the incorporation of randomness into the seasonal component and to propagate this same randomness in the coefficients of the variant trigonometric terms over time. A unique, recursive and systematic computational procedure based on the maximum likelihood estimation under the hypothesis of Gaussian errors is introduced. The referred procedure combines the Kalman filter with recursive adjustment of the covariance matrices and the selection method of harmonics number in the trigonometric terms. A key feature of this method is that it allows estimating not only the states of the system but also allows obtaining the standard errors of the estimated parameters and the prediction intervals. In addition, this work also presents a non-parametric bootstrap approach to improve the forecasting method based on Kalman filter recursions. The proposed framework is empirically explored with two real time series.  相似文献   

9.
This empirical paper presents a number of functional modelling and forecasting methods for predicting very short-term (such as minute-by-minute) electricity demand. The proposed functional methods slice a seasonal univariate time series (TS) into a TS of curves; reduce the dimensionality of curves by applying functional principal component analysis before using a univariate TS forecasting method and regression techniques. As data points in the daily electricity demand are sequentially observed, a forecast updating method can greatly improve the accuracy of point forecasts. Moreover, we present a non-parametric bootstrap approach to construct and update prediction intervals, and compare the point and interval forecast accuracy with some naive benchmark methods. The proposed methods are illustrated by the half-hourly electricity demand from Monday to Sunday in South Australia.  相似文献   

10.
We consider a generalized exponential (GEXP) model in the frequency domain for modeling seasonal long-memory time series. This model generalizes the fractional exponential (FEXP) model [Beran, J., 1993. Fitting long-memory models by generalized linear regression. Biometrika 80, 817–822] to allow the singularity in the spectral density occurring at an arbitrary frequency for modeling persistent seasonality and business cycles. Moreover, the short-memory structure of this model is characterized by the Bloomfield [1973. An exponential model for the spectrum of a scalar time series. Biometrika 60, 217–226] model, which has a fairly flexible semiparametric form. The proposed model includes fractionally integrated processes, Bloomfield models, FEXP models as well as GARMA models [Gray, H.L., Zhang, N.-F., Woodward, W.A., 1989. On generalized fractional processes. J. Time Ser. Anal. 10, 233–257] as special cases. We develop a simple regression method for estimating the seasonal long-memory parameter. The asymptotic bias and variance of the corresponding long-memory estimator are derived. Our methodology is applied to a sunspot data set and an Internet traffic data set for illustration.  相似文献   

11.
Time series of proportions of infected patients or positive specimens are frequently encountered in disease control and prevention. Since proportions are bounded and often asymmetrically distributed, conventional Gaussian time series models only apply to suitably transformed proportions. Here we borrow both from beta regression and from the well-established HHH model for infectious disease counts to propose an endemic–epidemic beta model for proportion time series. It accommodates the asymmetric shape and heteroskedasticity of proportion distributions and is consistent for complementary proportions. Coefficients can be interpreted in terms of odds ratios. A multivariate formulation with spatial power-law weights enables the joint estimation of model parameters from multiple regions. In our application to a flu activity index in the USA, we find that the endemic–epidemic beta model provides a better fit than a seasonal ARIMA model for the logit-transformed proportions. Furthermore, a multivariate approach can improve regional forecasts and reduce model complexity in comparison to univariate beta models stratified by region.  相似文献   

12.
13.
Summary. We show that difference-based methods can be used to construct simple and explicit estimators of error covariance and autoregressive parameters in nonparametric regression with time series errors. When the error process is Gaussian our estimators are efficient, but they are available well beyond the Gaussian case. As an illustration of their usefulness we show that difference-based estimators can be used to produce a simplified version of time series cross-validation. This new approach produces a bandwidth selector that is equivalent, to both first and second orders, to that given by the full time series cross-validation algorithm. Other applications of difference-based methods are to variance estimation and construction of confidence bands in nonparametric regression.  相似文献   

14.
We study a group lasso estimator for the multivariate linear regression model that accounts for correlated error terms. A block coordinate descent algorithm is used to compute this estimator. We perform a simulation study with categorical data and multivariate time series data, typical settings with a natural grouping among the predictor variables. Our simulation studies show the good performance of the proposed group lasso estimator compared to alternative estimators. We illustrate the method on a time series data set of gene expressions.  相似文献   

15.
The main focus of our paper is to compare the performance of different model selection criteria used for multivariate reduced rank time series. We consider one of the most commonly used reduced rank model, that is, the reduced rank vector autoregression (RRVAR (p, r)) introduced by Velu et al. [Reduced rank models for multiple time series. Biometrika. 1986;7(31):105–118]. In our study, the most popular model selection criteria are included. The criteria are divided into two groups, that is, simultaneous selection and two-step selection criteria, accordingly. Methods from the former group select both an autoregressive order p and a rank r simultaneously, while in the case of two-step criteria, first an optimal order p is chosen (using model selection criteria intended for the unrestricted VAR model) and then an optimal rank r of coefficient matrices is selected (e.g. by means of sequential testing). Considered model selection criteria include well-known information criteria (such as Akaike information criterion, Schwarz criterion, Hannan–Quinn criterion, etc.) as well as widely used sequential tests (e.g. the Bartlett test) and the bootstrap method. An extensive simulation study is carried out in order to investigate the efficiency of all model selection criteria included in our study. The analysis takes into account 34 methods, including 6 simultaneous methods and 28 two-step approaches, accordingly. In order to carefully analyse how different factors affect performance of model selection criteria, we consider over 150 simulation settings. In particular, we investigate the influence of the following factors: time series dimension, different covariance structure, different level of correlation among components and different level of noise (variance). Moreover, we analyse the prediction accuracy concerned with the application of the RRVAR model and compare it with results obtained for the unrestricted vector autoregression. In this paper, we also present a real data application of model selection criteria for the RRVAR model using the Polish macroeconomic time series data observed in the period 1997–2007.  相似文献   

16.
Various nonparametric approaches for Bayesian spectral density estimation of stationary time series have been suggested in the literature, mostly based on the Whittle likelihood approximation. A generalization of this approximation involving a nonparametric correction of a parametric likelihood has been proposed in the literature with a proof of posterior consistency for spectral density estimation in combination with the Bernstein–Dirichlet process prior for Gaussian time series. In this article, we will extend the posterior consistency result to non-Gaussian time series by employing a general consistency theorem for dependent data and misspecified models. As a special case, posterior consistency for the spectral density under the Whittle likelihood is also extended to non-Gaussian time series. Small sample properties of this approach are illustrated with several examples of non-Gaussian time series.  相似文献   

17.
SiZer (SIgnificant ZERo crossing of the derivatives) is a scale-space visualization tool for statistical inferences. In this paper we introduce a graphical device, which is based on SiZer, for the test of the equality of the mean of two time series. The estimation of the quantile in a confidence interval is theoretically justified by advanced distribution theory. The extension of the proposed method to the comparison of more than two time series is also done using residual analysis. A broad numerical study is conducted to demonstrate the sample performance of the proposed tool. In addition, asymptotic properties of SiZer for the comparison of two time series are investigated.  相似文献   

18.
19.
Modified cumulative sum (CUSUM) control charts and CUSUM schemes for residuals are suggested to detect changes in the covariance matrix of multivariate time series. Several properties of these schemes are derived when the in-control process is a stationary Gaussian process. A Monte Carlo study reveals that the proposed approaches show similar or even better performance than the schemes based on the multivariate exponentially weighted moving average (MEWMA) recursion. We illustrate how the control procedures can be applied to monitor the covariance structure of developed stock market indices.  相似文献   

20.
Summary The paper deals with missing data and forecasting problems in multivariate time series making use of the Common Components Dynamic Linear Model (DLMCC), presented in Quintana (1985), and West and Harrison (1989). Some results are presented and discussed: exploiting the correlation between series, estimated by the DLMCC, the paper shows as it is possible to update state vector posterior distributions for the unobserved series. This is realized on the base of the updating of the observed series state vectors, for which the usual Kalman filter equations can be applied. An application concerning some Italian private consumption series provides an example of the model capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号