首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Missing observations due to non‐response are commonly encountered in data collected from sample surveys. The focus of this article is on item non‐response which is often handled by filling in (or imputing) missing values using the observed responses (donors). Random imputation (single or fractional) is used within homogeneous imputation classes that are formed on the basis of categorical auxiliary variables observed on all the sampled units. A uniform response rate within classes is assumed, but that rate is allowed to vary across classes. We construct confidence intervals (CIs) for a population parameter that is defined as the solution to a smooth estimating equation with data collected using stratified simple random sampling. The imputation classes are assumed to be formed across strata. Fractional imputation with a fixed number of random draws is used to obtain an imputed estimating function. An empirical likelihood inference method under the fractional imputation is proposed and its asymptotic properties are derived. Two asymptotically correct bootstrap methods are developed for constructing the desired CIs. In a simulation study, the proposed bootstrap methods are shown to outperform traditional bootstrap methods and some non‐bootstrap competitors under various simulation settings. The Canadian Journal of Statistics 47: 281–301; 2019 © 2019 Statistical Society of Canada  相似文献   

2.
Parameter estimation with missing data is a frequently encountered problem in statistics. Imputation is often used to facilitate the parameter estimation by simply applying the complete-sample estimators to the imputed dataset.In this article, we consider the problem of parameter estimation with nonignorable missing data using the approach of parametric fractional imputation proposed by Kim (2011). Using the fractional weights, the E-step of the EM algorithm can be approximated by the weighted mean of the imputed data likelihood where the fractional weights are computed from the current value of the parameter estimates. Calibration fractional imputation is also considered as a way for improving the Monte Carlo approximation in the fractional imputation. Variance estimation is also discussed. Results from two simulation studies are presented to compare the proposed method with the existing methods. A real data example from the Korea Labor and Income Panel Survey (KLIPS) is also presented.  相似文献   

3.
Imputation is often used in surveys to treat item nonresponse. It is well known that treating the imputed values as observed values may lead to substantial underestimation of the variance of the point estimators. To overcome the problem, a number of variance estimation methods have been proposed in the literature, including resampling methods such as the jackknife and the bootstrap. In this paper, we consider the problem of doubly robust inference in the presence of imputed survey data. In the doubly robust literature, point estimation has been the main focus. In this paper, using the reverse framework for variance estimation, we derive doubly robust linearization variance estimators in the case of deterministic and random regression imputation within imputation classes. Also, we study the properties of several jackknife variance estimators under both negligible and nonnegligible sampling fractions. A limited simulation study investigates the performance of various variance estimators in terms of relative bias and relative stability. Finally, the asymptotic normality of imputed estimators is established for stratified multistage designs under both deterministic and random regression imputation. The Canadian Journal of Statistics 40: 259–281; 2012 © 2012 Statistical Society of Canada  相似文献   

4.
Imputation is a much used method for handling missing data. It is appealing as it separates the missing data part of the analysis, which is handled by imputation, and the estimation part, which is handled by complete data methods. Most imputation methods, however, either rely on strict parametric assumptions or are rather ad hoc in which case they often only work approximately under even stricter assumptions. In this paper a non-parametric imputation method is proposed. Since it is non-parametric it works under quite general assumptions. In particular, a model for the complete data is not required in the imputation step, and the complete data method used after the imputation may be a general estimating equation for estimating a finite-dimensional parameter. Large sample results for the resulting estimator are given.  相似文献   

5.
Missing data often complicate the analysis of scientific data. Multiple imputation is a general purpose technique for analysis of datasets with missing values. The approach is applicable to a variety of missing data patterns but often complicated by some restrictions like the type of variables to be imputed and the mechanism underlying the missing data. In this paper, the authors compare the performance of two multiple imputation methods, namely fully conditional specification and multivariate normal imputation in the presence of ordinal outcomes with monotone missing data patterns. Through a simulation study and an empirical example, the authors show that the two methods are indeed comparable meaning any of the two may be used when faced with scenarios, at least, as the ones presented here.  相似文献   

6.
Summary.  We propose to use calibrated imputation to compensate for missing values. This technique consists of finding final imputed values that are as close as possible to preliminary imputed values and are calibrated to satisfy constraints. Preliminary imputed values, potentially justified by an imputation model, are obtained through deterministic single imputation. Using appropriate constraints, the resulting imputed estimator is asymptotically unbiased for estimation of linear population parameters such as domain totals. A quasi-model-assisted approach is considered in the sense that inferences do not depend on the validity of an imputation model and are made with respect to the sampling design and a non-response model. An imputation model may still be used to generate imputed values and thus to improve the efficiency of the imputed estimator. This approach has the characteristic of handling naturally the situation where more than one imputation method is used owing to missing values in the variables that are used to obtain imputed values. We use the Taylor linearization technique to obtain a variance estimator under a general non-response model. For the logistic non-response model, we show that ignoring the effect of estimating the non-response model parameters leads to overestimating the variance of the imputed estimator. In practice, the overestimation is expected to be moderate or even negligible, as shown in a simulation study.  相似文献   

7.
This paper considers semiparametric partially linear single-index model with missing responses at random. Imputation approach is developed to estimate the regression coefficients, single-index coefficients and the nonparametric function, respectively. The imputation estimators for the regression coefficients and single-index coefficients are obtained by a stepwise approach. These estimators are shown to be asymptotically normal, and the estimator for the nonparametric function is proved to be asymptotically normal at any fixed point. The bandwidth problem is also considered in this paper, a delete-one cross validation method is used to select the optimal bandwidth. A simulation study is conducted to evaluate the proposed methods.  相似文献   

8.
Nonresponse is a very common phenomenon in survey sampling. Nonignorable nonresponse – that is, a response mechanism that depends on the values of the variable having nonresponse – is the most difficult type of nonresponse to handle. This article develops a robust estimation approach to estimating equations (EEs) by incorporating the modelling of nonignorably missing data, the generalized method of moments (GMM) method and the imputation of EEs via the observed data rather than the imputed missing values when some responses are subject to nonignorably missingness. Based on a particular semiparametric logistic model for nonignorable missing response, this paper proposes the modified EEs to calculate the conditional expectation under nonignorably missing data. We can apply the GMM to infer the parameters. The advantage of our method is that it replaces the non-parametric kernel-smoothing with a parametric sampling importance resampling (SIR) procedure to avoid nonparametric kernel-smoothing problems with high dimensional covariates. The proposed method is shown to be more robust than some current approaches by the simulations.  相似文献   

9.
Abstract

Imputation methods for missing data on a time-dependent variable within time-dependent Cox models are investigated in a simulation study. Quality of life (QoL) assessments were removed from the complete simulated datasets, which have a positive relationship between QoL and disease-free survival (DFS) and delayed chemotherapy and DFS, by missing at random and missing not at random (MNAR) mechanisms. Standard imputation methods were applied before analysis. Method performance was influenced by missing data mechanism, with one exception for simple imputation. The greatest bias occurred under MNAR and large effect sizes. It is important to carefully investigate the missing data mechanism.  相似文献   

10.
We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, we propose a multivariate random forest method for multiple responses of mixed types with missing responses. Imputation is performed for each bootstrap sample used to build the individual trees that form the forest. The individual trees are built using a weighted splitting rule allowing downweighting of imputed observations. A simulation study shows the benefits of this approach over complete case analysis when missing responses are missing completely at random and missing at random (MAR). In particular, the gain in prediction accuracy of the proposed method is larger in the MAR case and also increases as the proportion of missing increases.  相似文献   

12.
Consider estimation of a population mean of a response variable when the observations are missing at random with respect to the covariate. Two common approaches to imputing the missing values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse weighting approach. The regression approach includes the kernel regression imputation and the nearest neighbor imputation. The HT approach, employing inverse kernel-estimated weights, includes the basic estimator, the ratio estimator and the estimator using inverse kernel-weighted residuals. Asymptotic normality of the nearest neighbor imputation estimators is derived and compared to kernel regression imputation estimator under standard regularity conditions of the regression function and the missing pattern function. A comprehensive simulation study shows that the basic HT estimator is most sensitive to discontinuity in the missing data patterns, and the nearest neighbors estimators can be insensitive to missing data patterns unbalanced with respect to the distribution of the covariate. Empirical studies show that the nearest neighbor imputation method is most effective among these imputation methods for estimating a finite population mean and for classifying the species of the iris flower data.  相似文献   

13.
There has been increasing use of quality-of-life (QoL) instruments in drug development. Missing item values often occur in QoL data. A common approach to solve this problem is to impute the missing values before scoring. Several imputation procedures, such as imputing with the most correlated item and imputing with a row/column model or an item response model, have been proposed. We examine these procedures using data from two clinical trials, in which the original asthma quality-of-life questionnaire (AQLQ) and the miniAQLQ were used. We propose two modifications to existing procedures: truncating the imputed values to eliminate outliers and using the proportional odds model as the item response model for imputation. We also propose a novel imputation method based on a semi-parametric beta regression so that the imputed value is always in the correct range and illustrate how this approach can easily be implemented in commonly used statistical software. To compare these approaches, we deleted 5% of item values in the data according to three different missingness mechanisms, imputed them using these approaches and compared the imputed values with the true values. Our comparison showed that the row/column-model-based imputation with truncation generally performed better, whereas our new approach had better performance under a number scenarios.  相似文献   

14.
Dealing with incomplete data is a pervasive problem in statistical surveys. Bayesian networks have been recently used in missing data imputation. In this research, we propose a new methodology for the multivariate imputation of missing data using discrete Bayesian networks and conditional Gaussian Bayesian networks. Results from imputing missing values in coronary artery disease data set and milk composition data set as well as a simulation study from cancer-neapolitan network are presented to demonstrate and compare the performance of three Bayesian network-based imputation methods with those of multivariate imputation by chained equations (MICE) and the classical hot-deck imputation method. To assess the effect of the structure learning algorithm on the performance of the Bayesian network-based methods, two methods called Peter-Clark algorithm and greedy search-and-score have been applied. Bayesian network-based methods are: first, the method introduced by Di Zio et al. [Bayesian networks for imputation, J. R. Stat. Soc. Ser. A 167 (2004), 309–322] in which, each missing item of a variable is imputed using the information given in the parents of that variable; second, the method of Di Zio et al. [Multivariate techniques for imputation based on Bayesian networks, Neural Netw. World 15 (2005), 303–310] which uses the information in the Markov blanket set of the variable to be imputed and finally, our new proposed method which applies the whole available knowledge of all variables of interest, consisting the Markov blanket and so the parent set, to impute a missing item. Results indicate the high quality of our new proposed method especially in the presence of high missingness percentages and more connected networks. Also the new method have shown to be more efficient than the MICE method for small sample sizes with high missing rates.  相似文献   

15.
In real-life situations, we often encounter data sets containing missing observations. Statistical methods that address missingness have been extensively studied in recent years. One of the more popular approaches involves imputation of the missing values prior to the analysis, thereby rendering the data complete. Imputation broadly encompasses an entire scope of techniques that have been developed to make inferences about incomplete data, ranging from very simple strategies (e.g. mean imputation) to more advanced approaches that require estimation, for instance, of posterior distributions using Markov chain Monte Carlo methods. Additional complexity arises when the number of missingness patterns increases and/or when both categorical and continuous random variables are involved. Implementation of routines, procedures, or packages capable of generating imputations for incomplete data are now widely available. We review some of these in the context of a motivating example, as well as in a simulation study, under two missingness mechanisms (missing at random and missing not at random). Thus far, evaluation of existing implementations have frequently centred on the resulting parameter estimates of the prescribed model of interest after imputing the missing data. In some situations, however, interest may very well be on the quality of the imputed values at the level of the individual – an issue that has received relatively little attention. In this paper, we focus on the latter to provide further insight about the performance of the different routines, procedures, and packages in this respect.  相似文献   

16.
A version of the nonparametric bootstrap, which resamples the entire subjects from original data, called the case bootstrap, has been increasingly used for estimating uncertainty of parameters in mixed‐effects models. It is usually applied to obtain more robust estimates of the parameters and more realistic confidence intervals (CIs). Alternative bootstrap methods, such as residual bootstrap and parametric bootstrap that resample both random effects and residuals, have been proposed to better take into account the hierarchical structure of multi‐level and longitudinal data. However, few studies have been performed to compare these different approaches. In this study, we used simulation to evaluate bootstrap methods proposed for linear mixed‐effect models. We also compared the results obtained by maximum likelihood (ML) and restricted maximum likelihood (REML). Our simulation studies evidenced the good performance of the case bootstrap as well as the bootstraps of both random effects and residuals. On the other hand, the bootstrap methods that resample only the residuals and the bootstraps combining case and residuals performed poorly. REML and ML provided similar bootstrap estimates of uncertainty, but there was slightly more bias and poorer coverage rate for variance parameters with ML in the sparse design. We applied the proposed methods to a real dataset from a study investigating the natural evolution of Parkinson's disease and were able to confirm that the methods provide plausible estimates of uncertainty. Given that most real‐life datasets tend to exhibit heterogeneity in sampling schedules, the residual bootstraps would be expected to perform better than the case bootstrap. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A popular nonparametric treatment of missing value imputation uses methods based on k-nearest neighbors, where the number k of nearest neighbors is fixed without any consideration of the local features of missing values. This article proposes an alternative imputation method based on adaptive nearest neighbors, which takes into account the local features of the data. The proposed method adapts the number of neighbors in imputing the missing values according to the location of the missing values. Efficiency evaluation is then gauged through simulation studies using both simulated and real data. It is shown that the proposed method has distinct advantages over the imputation method based on k-nearest neighbors.  相似文献   

18.
缺失数据是影响调查问卷数据质量的重要因素,对调查问卷中的缺失值进行插补可以显著提高调查数据的质量。调查问卷的数据类型多以分类型数据为主,数据挖掘技术中的分类算法是处理属性分类问题的常用方法,随机森林模型是众多分类算法中精度较高的方法之一。将随机森林模型引入调查问卷缺失数据的插补研究中,提出了基于随机森林模型的分类数据缺失值插补方法,并根据不同的缺失模式探讨了相应的插补步骤。通过与其它方法的实证模拟比较,表明随机森林插补法得到的插补值准确度更优、可信度更高。  相似文献   

19.
This study investigated the bias of factor loadings obtained from incomplete questionnaire data with imputed scores. Three models were used to generate discrete ordered rating scale data typical of questionnaires, also known as Likert data. These methods were the multidimensional polytomous latent trait model, a normal ogive item response theory model, and the discretized normal model. Incomplete data due to nonresponse were simulated using either missing completely at random or not missing at random mechanisms. Subsequently, for each incomplete data matrix, four imputation methods were applied for imputing item scores. Based on a completely crossed six-factor design, it was concluded that in general, bias was small for all data simulation methods and all imputation methods, and under all nonresponse mechanisms. Imputation method, two-way-plus-error, had the smallest bias in the factor loadings. Bias based on the discretized normal model was greater than that based on the other two models.  相似文献   

20.
Caren Hasler  Yves Tillé 《Statistics》2016,50(6):1310-1331
Random imputation is an interesting class of imputation methods to handle item nonresponse because it tends to preserve the distribution of the imputed variable. However, such methods amplify the total variance of the estimators because values are imputed at random. This increase in variance is called imputation variance. In this paper, we propose a new random hot-deck imputation method that is based on the k-nearest neighbour methodology. It replaces the missing value of a unit with the observed value of a similar unit. Calibration and balanced sampling are applied to minimize the imputation variance. Moreover, our proposed method provides triple protection against nonresponse bias. This means that if at least one out of three specified models holds, then the resulting total estimator is unbiased. Finally, our approach allows the user to perform consistency edits and to impute simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号