首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.  The main statistical problem in many epidemiological studies which involve repeated measurements of surrogate markers is the frequent occurrence of missing data. Standard likelihood-based approaches like the linear random-effects model fail to give unbiased estimates when data are non-ignorably missing. In human immunodeficiency virus (HIV) type 1 infection, two markers which have been widely used to track progression of the disease are CD4 cell counts and HIV–ribonucleic acid (RNA) viral load levels. Repeated measurements of these markers tend to be informatively censored, which is a special case of non-ignorable missingness. In such cases, we need to apply methods that jointly model the observed data and the missingness process. Despite their high correlation, longitudinal data of these markers have been analysed independently by using mainly random-effects models. Touloumi and co-workers have proposed a model termed the joint multivariate random-effects model which combines a linear random-effects model for the underlying pattern of the marker with a log-normal survival model for the drop-out process. We extend the joint multivariate random-effects model to model simultaneously the CD4 cell and viral load data while adjusting for informative drop-outs due to disease progression or death. Estimates of all the model's parameters are obtained by using the restricted iterative generalized least squares method or a modified version of it using the EM algorithm as a nested algorithm in the case of censored survival data taking also into account non-linearity in the HIV–RNA trend. The method proposed is evaluated and compared with simpler approaches in a simulation study. Finally the method is applied to a subset of the data from the 'Concerted action on seroconversion to AIDS and death in Europe' study.  相似文献   

2.
In this paper, we develop a conditional model for analyzing mixed bivariate continuous and ordinal longitudinal responses. We propose a quantile regression model with random effects for analyzing continuous responses. For this purpose, an Asymmetric Laplace Distribution (ALD) is allocated for continuous response given random effects. For modeling ordinal responses, a cumulative logit model is used, via specifying a latent variable model, with considering other random effects. Therefore, the intra-association between continuous and ordinal responses is taken into account using their own exclusive random effects. But, the inter-association between two mixed responses is taken into account by adding a continuous response term in the ordinal model. We use a Bayesian approach via Markov chain Monte Carlo method for analyzing the proposed conditional model and to estimate unknown parameters, a Gibbs sampler algorithm is used. Moreover, we illustrate an application of the proposed model using a part of the British Household Panel Survey data set. The results of data analysis show that gender, age, marital status, educational level and the amount of money spent on leisure have significant effects on annual income. Also, the associated parameter is significant in using the best fitting proposed conditional model, thus it should be employed rather than analyzing separate models.  相似文献   

3.
In this paper, a Bayesian framework using a joint transition model for analysing longitudinal mixed ordinal and continuous responses is considered. The joint model considers a multivariate mixed model for the responses in which a transitive cumulative logistic regression model and an autoregressive regression model are used to model ordinal and continuous responses, respectively. Also, to take into account the association between longitudinal ordinal and continuous responses, a dynamic association parameter is used. A test is conducted to see whether this parameter is time-invariant and another test is presented to see whether this parameter is equal to zero or significantly far from zero. Our approach is applied to longitudinal PIAT (Peabody Individual Achievement Test) data where the Bayesian estimates of parameters are obtained.  相似文献   

4.
We provide a detailed statistical investigation into the economic and demographic factors that determine sporting participation in England. Using data from the 1997 health survey of England we fit random-effects probit models that take into account unobservable household preferences for sporting activities, as well as the economic and demographic characteristics of respondents. Our main results from the multivariate analysis are that sporting participation is positively related to household income, the educated participate in sports to a greater extent than the uneducated, there is no evidence of regional differentials in sporting participation and household preferences play an important role in the decision to participate in sports.  相似文献   

5.
The shared-parameter model and its so-called hierarchical or random-effects extension are widely used joint modeling approaches for a combination of longitudinal continuous, binary, count, missing, and survival outcomes that naturally occurs in many clinical and other studies. A random effect is introduced and shared or allowed to differ between two or more repeated measures or longitudinal outcomes, thereby acting as a vehicle to capture association between the outcomes in these joint models. It is generally known that parameter estimates in a linear mixed model (LMM) for continuous repeated measures or longitudinal outcomes allow for a marginal interpretation, even though a hierarchical formulation is employed. This is not the case for the generalized linear mixed model (GLMM), that is, for non-Gaussian outcomes. The aforementioned joint models formulated for continuous and binary or two longitudinal binomial outcomes, using the LMM and GLMM, will naturally have marginal interpretation for parameters associated with the continuous outcome but a subject-specific interpretation for the fixed effects parameters relating covariates to binary outcomes. To derive marginally meaningful parameters for the binary models in a joint model, we adopt the marginal multilevel model (MMM) due to Heagerty [13] and Heagerty and Zeger [14] and formulate a joint MMM for two longitudinal responses. This enables to (1) capture association between the two responses and (2) obtain parameter estimates that have a population-averaged interpretation for both outcomes. The model is applied to two sets of data. The results are compared with those obtained from the existing approaches such as generalized estimating equations, GLMM, and the model of Heagerty [13]. Estimates were found to be very close to those from single analysis per outcome but the joint model yields higher precision and allows for quantifying the association between outcomes. Parameters were estimated using maximum likelihood. The model is easy to fit using available tools such as the SAS NLMIXED procedure.  相似文献   

6.
Typical joint modeling of longitudinal measurements and time to event data assumes that two models share a common set of random effects with a normal distribution assumption. But, sometimes the underlying population that the sample is extracted from is a heterogeneous population and detecting homogeneous subsamples of it is an important scientific question. In this paper, a finite mixture of normal distributions for the shared random effects is proposed for considering the heterogeneity in the population. For detecting whether the unobserved heterogeneity exits or not, we use a simple graphical exploratory diagnostic tool proposed by Verbeke and Molenberghs [34] to assess whether the traditional normality assumption for the random effects in the mixed model is adequate. In the joint modeling setting, in the case of evidence against normality (homogeneity), a finite mixture of normals is used for the shared random-effects distribution. A Bayesian MCMC procedure is developed for parameter estimation and inference. The methodology is illustrated using some simulation studies. Also, the proposed approach is used for analyzing a real HIV data set, using the heterogeneous joint model for this data set, the individuals are classified into two groups: a group with high risk and a group with moderate risk.  相似文献   

7.
A longitudinal study commonly follows a set of variables, measured for each individual repeatedly over time, and usually suffers from incomplete data problem. A common approach for dealing with longitudinal categorical responses is to use the Generalized Linear Mixed Model (GLMM). This model induces the potential relation between response variables over time via a vector of random effects, assumed to be shared parameters in the non-ignorable missing mechanism. Most GLMMs assume that the random-effects parameters follow a normal or symmetric distribution and this leads to serious problems in real applications. In this paper, we propose GLMMs for the analysis of incomplete multivariate longitudinal categorical responses with a non-ignorable missing mechanism based on a shared parameter framework with the less restrictive assumption of skew-normality for the random effects. These models may contain incomplete data with monotone and non-monotone missing patterns. The performance of the model is evaluated using simulation studies and a well-known longitudinal data set extracted from a fluvoxamine trial is analyzed to determine the profile of fluvoxamine in ambulatory clinical psychiatric practice.  相似文献   

8.
We propose a flexible semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data. The model can handle either single cycle or, more generally, multiple consecutive cycle data. The approach models the mean of responses by parametric fixed effects and a smooth nonparametric function for the underlying time effects, and the relationship across the bivariate responses by a bivariate Gaussian random field and a joint distribution of random effects. The proposed model not only can model complicated individual profiles, but also allows for more flexible within-subject and between-response correlations. The fixed effects regression coefficients and the nonparametric time functions are estimated using maximum penalized likelihood, where the resulting estimator for the nonparametric time function is a cubic smoothing spline. The smoothing parameters and variance components are estimated simultaneously using restricted maximum likelihood. Simulation results show that the parameter estimates are close to the true values. The fit of the proposed model on a real bivariate longitudinal dataset of pre-menopausal women also performs well, both for a single cycle analysis and for a multiple consecutive cycle analysis. The Canadian Journal of Statistics 48: 471–498; 2020 © 2020 Statistical Society of Canada  相似文献   

9.
Dependent data arise in many studies. Frequently adopted sampling designs, such as cluster, multilevel, spatial, and repeated measures, may induce this dependence, which the analysis of the data needs to take into due account. In a previous publication (Geraci and Bottai in Biostatistics 8:140–154, 2007), we proposed a conditional quantile regression model for continuous responses where subject-specific random intercepts were included to account for within-subject dependence in the context of longitudinal data analysis. The approach hinged upon the link existing between the minimization of weighted absolute deviations, typically used in quantile regression, and the maximization of a Laplace likelihood. Here, we consider an extension of those models to more complex dependence structures in the data, which are modeled by including multiple random effects in the linear conditional quantile functions. We also discuss estimation strategies to reduce the computational burden and inefficiency associated with the Monte Carlo EM algorithm we have proposed previously. In particular, the estimation of the fixed regression coefficients and of the random effects’ covariance matrix is based on a combination of Gaussian quadrature approximations and non-smooth optimization algorithms. Finally, a simulation study and a number of applications of our models are presented.  相似文献   

10.
Abstract. In this paper, conditional on random family effects, we consider an auto‐regression model for repeated count data and their corresponding time‐dependent covariates, collected from the members of a large number of independent families. The count responses, in such a set up, unconditionally exhibit a non‐stationary familial–longitudinal correlation structure. We then take this two‐way correlation structure into account, and develop a generalized quasilikelihood (GQL) approach for the estimation of the regression effects and the familial correlation index parameter, whereas the longitudinal correlation parameter is estimated by using the well‐known method of moments. The performance of the proposed estimation approach is examined through a simulation study. Some model mis‐specification effects are also studied. The estimation methodology is illustrated by analysing real life healthcare utilization count data collected from 36 families of size four over a period of 4 years.  相似文献   

11.
Summary.  Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder which is most often diagnosed in childhood with symptoms often persisting into adulthood. Elevated rates of substance use disorders have been evidenced among those with ADHD, but recent research focusing on the relationship between subtypes of ADHD and specific drugs is inconsistent. We propose a latent transition model (LTM) to guide our understanding of how drug use progresses, in particular marijuana use, while accounting for the measurement error that is often found in self-reported substance use data. We extend the LTM to include a latent class predictor to represent empirically derived ADHD subtypes that do not rely on meeting specific diagnostic criteria. We begin by fitting two separate latent class analysis (LCA) models by using second-order estimating equations: a longitudinal LCA model to define stages of marijuana use, and a cross-sectional LCA model to define ADHD subtypes. The LTM model parameters describing the probability of transitioning between the LCA-defined stages of marijuana use and the influence of the LCA-defined ADHD subtypes on these transition rates are then estimated by using a set of first-order estimating equations given the LCA parameter estimates. A robust estimate of the LTM parameter variance that accounts for the variation due to the estimation of the two sets of LCA parameters is proposed. Solving three sets of estimating equations enables us to determine the underlying latent class structures independently of the model for the transition rates and simplifying assumptions about the correlation structure at each stage reduces the computational complexity.  相似文献   

12.
A method of estimation for generalised mixed models is applied to the estimation of regression parameters in a proportional hazards model with time dependent frailty. A parameter representing change over time is introduced and is modelled in turn into a fixed effect, a normally distributed random effect and a longitudinal effect in which the random component relates to the patient characteristics. Both maximum likelihood and residual maximum likelihood estimators are given.  相似文献   

13.
We propose a flexible functional approach for modelling generalized longitudinal data and survival time using principal components. In the proposed model the longitudinal observations can be continuous or categorical data, such as Gaussian, binomial or Poisson outcomes. We generalize the traditional joint models that treat categorical data as continuous data by using some transformations, such as CD4 counts. The proposed model is data-adaptive, which does not require pre-specified functional forms for longitudinal trajectories and automatically detects characteristic patterns. The longitudinal trajectories observed with measurement error or random error are represented by flexible basis functions through a possibly nonlinear link function, combining dimension reduction techniques resulting from functional principal component (FPC) analysis. The relationship between the longitudinal process and event history is assessed using a Cox regression model. Although the proposed model inherits the flexibility of non-parametric methods, the estimation procedure based on the EM algorithm is still parametric in computation, and thus simple and easy to implement. The computation is simplified by dimension reduction for random coefficients or FPC scores. An iterative selection procedure based on Akaike information criterion (AIC) is proposed to choose the tuning parameters, such as the knots of spline basis and the number of FPCs, so that appropriate degree of smoothness and fluctuation can be addressed. The effectiveness of the proposed approach is illustrated through a simulation study, followed by an application to longitudinal CD4 counts and survival data which were collected in a recent clinical trial to compare the efficiency and safety of two antiretroviral drugs.  相似文献   

14.
Summary.  We discuss a method for combining different but related longitudinal studies to improve predictive precision. The motivation is to borrow strength across clinical studies in which the same measurements are collected at different frequencies. Key features of the data are heterogeneous populations and an unbalanced design across three studies of interest. The first two studies are phase I studies with very detailed observations on a relatively small number of patients. The third study is a large phase III study with over 1500 enrolled patients, but with relatively few measurements on each patient. Patients receive different doses of several drugs in the studies, with the phase III study containing significantly less toxic treatments. Thus, the main challenges for the analysis are to accommodate heterogeneous population distributions and to formalize borrowing strength across the studies and across the various treatment levels. We describe a hierarchical extension over suitable semiparametric longitudinal data models to achieve the inferential goal. A nonparametric random-effects model accommodates the heterogeneity of the population of patients. A hierarchical extension allows borrowing strength across different studies and different levels of treatment by introducing dependence across these nonparametric random-effects distributions. Dependence is introduced by building an analysis of variance (ANOVA) like structure over the random-effects distributions for different studies and treatment combinations. Model structure and parameter interpretation are similar to standard ANOVA models. Instead of the unknown normal means as in standard ANOVA models, however, the basic objects of inference are random distributions, namely the unknown population distributions under each study. The analysis is based on a mixture of Dirichlet processes model as the underlying semiparametric model.  相似文献   

15.
"A mixed model is proposed for the analysis of geographic variability in mortality rates. In addition to demographic parameters and random geographic parameters, the model includes additional random-effects parameters to adjust for extra-Poisson variability. The model uses a gamma-Poisson distribution with a random scale parameter having an inverse gamma prior. An empirical Bayes approach is used to estimate relative risks for geographic regions and annual rates for demographic groups within each region. Lung cancer in Missouri is used to motivate and illustrate the procedure."  相似文献   

16.
Regression models with random effects are proposed for joint analysis of negative binomial and ordinal longitudinal data with nonignorable missing values under fully parametric framework. The presented model simultaneously considers a multivariate probit regression model for the missing mechanisms, which provides the ability of examining the missing data assumptions and a multivariate mixed model for the responses. Random effects are used to take into account the correlation between longitudinal responses of the same individual. A full likelihood-based approach that allows yielding maximum likelihood estimates of the model parameters is used. The model is applied to a medical data, obtained from an observational study on women, where the correlated responses are the ordinal response of osteoporosis of the spine and negative binomial response is the number of joint damage. A sensitivity of the results to the assumptions is also investigated. The effect of some covariates on all responses are investigated simultaneously.  相似文献   

17.
Over the last 20 or more years a lot of clinical applications and methodological development in the area of joint models of longitudinal and time-to-event outcomes have come up. In these studies, patients are followed until an event, such as death, occurs. In most of the work, using subject-specific random-effects as frailty, the dependency of these two processes has been established. In this article, we propose a new joint model that consists of a linear mixed-effects model for longitudinal data and an accelerated failure time model for the time-to-event data. These two sub-models are linked via a latent random process. This model will capture the dependency of the time-to-event on the longitudinal measurements more directly. Using standard priors, a Bayesian method has been developed for estimation. All computations are implemented using OpenBUGS. Our proposed method is evaluated by a simulation study, which compares the conditional model with a joint model with local independence by way of calibration. Data on Duchenne muscular dystrophy (DMD) syndrome and a set of data in AIDS patients have been analysed.  相似文献   

18.
The elderly population in the USA is expected to double in size by the year 2025, making longitudinal health studies of this population of increasing importance. The degree of loss to follow-up in studies of the elderly, which is often because elderly people cannot remain in the study, enter a nursing home or die, make longitudinal studies of this population problematic. We propose a latent class model for analysing multiple longitudinal binary health outcomes with multiple-cause non-response when the data are missing at random and a non-likelihood-based analysis is performed. We extend the estimating equations approach of Robins and co-workers to latent class models by reweighting the multiple binary longitudinal outcomes by the inverse probability of being observed. This results in consistent parameter estimates when the probability of non-response depends on observed outcomes and covariates (missing at random) assuming that the model for non-response is correctly specified. We extend the non-response model so that institutionalization, death and missingness due to failure to locate, refusal or incomplete data each have their own set of non-response probabilities. Robust variance estimates are derived which account for the use of a possibly misspecified covariance matrix, estimation of missing data weights and estimation of latent class measurement parameters. This approach is then applied to a study of lower body function among a subsample of the elderly participating in the 6-year Longitudinal Study of Aging.  相似文献   

19.
Likelihood-based marginalized models using random effects have become popular for analyzing longitudinal categorical data. These models permit direct interpretation of marginal mean parameters and characterize the serial dependence of longitudinal outcomes using random effects [12,22]. In this paper, we propose model that expands the use of previous models to accommodate longitudinal nominal data. Random effects using a new covariance matrix with a Kronecker product composition are used to explain serial and categorical dependence. The Quasi-Newton algorithm is developed for estimation. These proposed methods are illustrated with a real data set and compared with other standard methods.  相似文献   

20.
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within‐subject, dependence, either via random effects or regressing on previous responses. In this paper, the authors extend the work of Heagerty to handle multivariate longitudinal binary response data using a triple of regression models that directly model the marginal mean response while taking into account dependence across time and across responses. Markov Chain Monte Carlo methods are used for inference. Data from the Iowa Youth and Families Project are used to illustrate the methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号