首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We develop exact inference for the location and scale parameters of the Laplace (double exponential) distribution based on their maximum likelihood estimators from a Type-II censored sample. Based on some pivotal quantities, exact confidence intervals and tests of hypotheses are constructed. Upon conditioning first on the number of observations that are below the population median, exact distributions of the pivotal quantities are expressed as mixtures of linear combinations and of ratios of linear combinations of standard exponential random variables, which facilitates the computation of quantiles of these pivotal quantities. Tables of quantiles are presented for the complete sample case.  相似文献   

2.
In this paper, we make use of an algorithm of Huffer and Lin (2000) in order to develop exact interval estimation for the scale parameter to of an exponential distribution based on doubly Type-II censored samples. We also evaluate the accuracy of a chi-square approximation proposed by Balakrishnan and Gupta (1998). We present the MAPLE program for the determination of the exact percentage points of the pivotal quantity based on the best linear unbiased estimator. Finally, we present a couple of examples to illustrate the method of inference developed here.  相似文献   

3.
The exact inference and prediction intervals for the K-sample exponential scale parameter under doubly Type-II censored samples are derived using an algorithm of Huffer and Lin [Huffer, F.W. and Lin, C.T., 2001, Computing the joint distribution of general linear combinations of spacings or exponen-tial variates. Statistica Sinica, 11, 1141–1157.]. This approach provides a simple way to determine the exact percentage points of the pivotal quantity based on the best linear unbiased estimator in order to develop exact inference for the scale parameter as well as to construct exact prediction intervals for failure times unobserved in the ith sample. Similarly, exact prediction intervals for failure times of units from a future sample can also be easily obtained.  相似文献   

4.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

5.
This article addresses estimation and prediction problems for the two-parameter half-logistic distribution based on pivotal quantities when a sample is available from the progressively Type-II censoring scheme. An unbiased estimator of the location parameter based on a pivotal quantity is derived. To estimate the scale parameter, a new method based on a pivotal quantity is proposed. The proposed method provides a simpler estimation equation than the maximum likelihood equation. In addition, confidence intervals for the location and scale parameters are derived from these pivotal quantities. In the prediction of censored failure times, the shortest-length predictive intervals for the censored failure times are derived using a pivotal quantity. Finally, the validity of the proposed method is assessed through Monte Carlo simulations and a real data set is presented for illustration purposes.  相似文献   

6.
The extreme value distribution has been extensively used to model natural phenomena such as rainfall and floods, and also in modeling lifetimes and material strengths. Maximum likelihood estimation (MLE) for the parameters of the extreme value distribution leads to likelihood equations that have to be solved numerically, even when the complete sample is available. In this paper, we discuss point and interval estimation based on progressively Type-II censored samples. Through an approximation in the likelihood equations, we obtain explicit estimators which are approximations to the MLEs. Using these approximate estimators as starting values, we obtain the MLEs using an iterative method and examine numerically their bias and mean squared error. The approximate estimators compare quite favorably to the MLEs in terms of both bias and efficiency. Results of the simulation study, however, show that the probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic normality are unsatisfactory for both these estimators and particularly so when the effective sample size is small. We, therefore, suggest the use of unconditional simulated percentage points of these pivotal quantities for the construction of confidence intervals. The results are presented for a wide range of sample sizes and different progressive censoring schemes. We conclude with an illustrative example.  相似文献   

7.
In this paper, inference for a multicomponent stress–strength model is studied. When latent strength and stress random variables follow a bathtub-shaped distribution and the failure times are Type-II censored, the maximum likelihood estimate of the multicomponent stress–strength reliability (MSR) is established when there are common strength and stress parameters. Approximate confidence interval is also constructed by using the asymptotic distribution theory and delta method. Furthermore, another alternative generalized point and confidence interval estimators for the MSR are constructed based on pivotal quantities. Moreover, the likelihood and the pivotal quantities-based estimates for the MSR are also provided under unequal strength and stress parameter case. To compare the equivalence of the stress and strength parameters, the likelihood ratio test for hypothesis of interest is also provided. Finally, simulation studies and a real data example are given for illustration.  相似文献   

8.
Epstein [Truncated life tests in the exponential case, Ann. Math. Statist. 25 (1954), pp. 555–564] introduced a hybrid censoring scheme (called Type-I hybrid censoring) and Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring, Comm. Statist. Theory Methods 17 (1988), pp. 1857–1870] derived the exact distribution of the maximum-likelihood estimator (MLE) of the mean of a scaled exponential distribution based on a Type-I hybrid censored sample. Childs et al. [Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Ann. Inst. Statist. Math. 55 (2003), pp. 319–330] provided an alternate simpler expression for this distribution, and also developed analogous results for another hybrid censoring scheme (called Type-II hybrid censoring). The purpose of this paper is to derive the exact bivariate distribution of the MLE of the parameter vector of a two-parameter exponential model based on hybrid censored samples. The marginal distributions are derived and exact confidence bounds for the parameters are obtained. The results are also used to derive the exact distribution of the MLE of the pth quantile, as well as the corresponding confidence bounds. These exact confidence intervals are then compared with parametric bootstrap confidence intervals in terms of coverage probabilities. Finally, we present some numerical examples to illustrate the methods of inference developed here.  相似文献   

9.
In this paper, we consider the problem of estimating the scale parameter of the inverse Rayleigh distribution based on general progressively Type-II censored samples and progressively Type-II censored samples. The pivotal quantity method is used to derive the estimator of the scale parameter. Besides, considering that the maximum likelihood estimator is tough to obtain for this distribution, we derive an explicit estimator of the scale parameter by approximating the likelihood equation with Taylor expansion. The interval estimation is also studied based on pivotal inference. Then we conduct Monte Carlo simulations and compare the performance of different estimators. We demonstrate that the pivotal inference is simpler and more effective. The further application of the pivotal quantity method is also discussed theoretically. Finally, two real data sets are analyzed using our methods.  相似文献   

10.
The scaled (two-parameter) Type I generalized logistic distribution (GLD) is considered with the known shape parameter. The ML method does not yield an explicit estimator for the scale parameter even in complete samples. In this article, we therefore construct a new linear estimator for scale parameter, based on complete and doubly Type-II censored samples, by making linear approximations to the intractable terms of the likelihood equation using least-squares (LS) method, a new approach of linearization. We call this as linear approximate maximum likelihood estimator (LAMLE). We also construct LAMLE based on Taylor series method of linear approximation and found that this estimator is slightly biased than that based on the LS method. A Monte Carlo simulation is used to investigate the performance of LAMLE and found that it is almost as efficient as MLE, though biased than MLE. We also compare unbiased LAMLE with BLUE based on the exact variances of the estimators and interestingly this new unbiased LAMLE is found just as efficient as the BLUE in both complete and Type-II censored samples. Since MLE is known as asymptotically unbiased, in large samples we compare unbiased LAMLE with MLE and found that this estimator is almost as efficient as MLE. We have also discussed interval estimation of the scale parameter from complete and Type-II censored samples. Finally, we present some numerical examples to illustrate the construction of the new estimators developed here.  相似文献   

11.
Point and interval estimators for the scale parameter of the component lifetime distribution of a k-component parallel system are obtained when the component lifetimes are assumed to be independently and identically exponentially distributed. We prove that the maximum likelihood estimator of the scale parameter based on progressively Type-II censored system lifetimes is unique and can be obtained by a fixed-point iteration procedure. In particular, we illustrate that the Newton–Raphson method does not converge for any initial value. Furthermore, exact confidence intervals are constructed by a transformation using normalized spacings and other component lifetime distributions including Weibull distribution are discussed.  相似文献   

12.
In this paper, we consider the simple step-stress model for a two-parameter exponential distribution, when both the parameters are unknown and the data are Type-II censored. It is assumed that under two different stress levels, the scale parameter only changes but the location parameter remains unchanged. It is observed that the maximum likelihood estimators do not always exist. We obtain the maximum likelihood estimates of the unknown parameters whenever they exist. We provide the exact conditional distributions of the maximum likelihood estimators of the scale parameters. Since the construction of the exact confidence intervals is very difficult from the conditional distributions, we propose to use the observed Fisher Information matrix for this purpose. We have suggested to use the bootstrap method for constructing confidence intervals. Bayes estimates and associated credible intervals are obtained using the importance sampling technique. Extensive simulations are performed to compare the performances of the different confidence and credible intervals in terms of their coverage percentages and average lengths. The performances of the bootstrap confidence intervals are quite satisfactory even for small sample sizes.  相似文献   

13.
In this paper we address estimation and prediction problems for extreme value distributions under the assumption that the only available data are the record values. We provide some properties and pivotal quantities, and derive unbiased estimators for the location and rate parameters based on these properties and pivotal quantities. In addition, we discuss mean-squared errors of the proposed estimators and exact confidence intervals for the rate parameter. In Bayesian inference, we develop objective Bayesian analysis by deriving non informative priors such as the Jeffrey, reference, and probability matching priors for the location and rate parameters. We examine the validity of the proposed methods through Monte Carlo simulations for various record values of size and present a real data set for illustration purposes.  相似文献   

14.
In this paper, we make use of an algorithm of Huffer & Lin (2001) in order to develop exact prediction intervals for failure times from one-parameter and two- parameter exponential distributions based on doubly Type-II censored samples. We show that this method yields the same results as those of Lawless (1971, 1977) and Like μ(1974) in the case when the available sample is Type-II right censored. We present a computational algorithm for the determination of the exact percentage points of the pivotal quantities used in the construction of these prediction intervals. We also present some tables of these percentage points for the prediction of the ℓth order statistic in a sample of size n for both one- and two-parameter exponential distributions, assuming that the available sample is doubly Type-II censored. Finally, we present two examples to illustrate the methods of inference developed here.  相似文献   

15.
ABSTRACT

The Lindley distribution is an important distribution for analysing the stress–strength reliability models and lifetime data. In many ways, the Lindley distribution is a better model than that based on the exponential distribution. Order statistics arise naturally in many of such applications. In this paper, we derive the exact explicit expressions for the single, double (product), triple and quadruple moments of order statistics from the Lindley distribution. Then, we use these moments to obtain the best linear unbiased estimates (BLUEs) of the location and scale parameters based on Type-II right-censored samples. Next, we use these results to determine the mean, variance, and coefficients of skewness and kurtosis of some certain linear functions of order statistics to develop Edgeworth approximate confidence intervals of the location and scale Lindley parameters. In addition, we carry out some numerical illustrations through Monte Carlo simulations to show the usefulness of the findings. Finally, we apply the findings of the paper to some real data set.  相似文献   

16.

Recently, exact confidence bounds and exact likelihood inference have been developed based on hybrid censored samples by Chen and Bhattacharyya [Chen, S. and Bhattacharyya, G.K. (1998). Exact confidence bounds for an exponential parameter under hybrid censoring. Communications in StatisticsTheory and Methods, 17, 1857–1870.], Childs et al. [Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55, 319–330.], and Chandrasekar et al. [Chandrasekar, B., Childs, A. and Balakrishnan, N. (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring. Naval Research Logistics, 51, 994–1004.] for the case of the exponential distribution. In this article, we propose an unified hybrid censoring scheme (HCS) which includes many cases considered earlier as special cases. We then derive the exact distribution of the maximum likelihood estimator as well as exact confidence intervals for the mean of the exponential distribution under this general unified HCS. Finally, we present some examples to illustrate all the methods of inference developed here.  相似文献   

17.
In this paper, inference for the scale parameter of lifetime distribution of a k-unit parallel system is provided. Lifetime distribution of each unit of the system is assumed to be a member of a scale family of distributions. Maximum likelihood estimator (MLE) and confidence intervals for the scale parameter based on progressively Type-II censored sample are obtained. A β-expectation tolerance interval for the lifetime of the system is obtained. As a member of the scale family, half-logistic distribution is considered and the performance of the MLE, confidence intervals and tolerance intervals are studied using simulation.  相似文献   

18.
Comparative lifetime experiments are of great importance when the interest is in ascertaining the relative merits of two competing products with regard to their reliability. In this article, we consider two exponential populations and when joint progressive Type-II censoring is implemented on the two samples. We then derive the moment generating functions and the exact distributions of the maximum likelihood estimators (MLEs) of the mean lifetimes of the two exponential populations under such a joint progressive Type-II censoring. We then discuss the exact lower confidence bounds, exact confidence intervals, and simultaneous confidence regions. Next, we discuss the corresponding approximate results based on the asymptotic normality of the MLEs as well as those based on the Bayesian method. All these confidence intervals and regions are then compared by means of Monte Carlo simulations with those obtained from bootstrap methods. Finally, an illustrative example is presented in order to illustrate all the methods of inference discussed here.  相似文献   

19.
In this article, we consider a general progressively Type-II censored life test where the lifetime distribution of each test unit belongs to the scale family. We derive an exact confidence interval for the scale parameter. Using Monte Carlo simulation method, we assess the expected lower and upper limits of the proposed confidence interval for the exponential distribution. Finally, we present a numerical example to illustrate the proposed procedure.  相似文献   

20.
This paper proposes an approximation to the distribution of a goodness-of-fit statistic proposed recently by Balakrishnan et al. [Balakrishnan, N., Ng, H.K.T. and Kannan, N., 2002, A test of exponentiality based on spacings for progressively Type-II censored data. In: C. Huber-Carol et al. (Eds.), Goodness-of-Fit Tests and Model Validity (Boston: Birkhäuser), pp. 89–111.] for testing exponentiality based on progressively Type-II right censored data. The moments of this statistic can be easily calculated, but its distribution is not known in an explicit form. We first obtain the exact moments of the statistic using Basu's theorem and then the density approximants based on these exact moments of the statistic, expressed in terms of Laguerre polynomials, are proposed. A comparative study of the proposed approximation to the exact critical values, computed by Balakrishnan and Lin [Balakrishnan, N. and Lin, C.T., 2003, On the distribution of a test for exponentiality based on progressively Type-II right censored spacings. Journal of Statistical Computation and Simulation, 73 (4), 277–283.], is carried out. This reveals that the proposed approximation is very accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号