首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of robust measures helps to increase the precision of the estimators, especially for the estimation of extremely skewed distributions. In this article, a generalized ratio estimator is proposed by using some robust measures with single auxiliary variable under the adaptive cluster sampling (ACS) design. We have incorporated tri-mean (TM), mid-range (MR) and Hodges-Lehman (HL) of the auxiliary variable as robust measures together with some conventional measures. The expressions of bias and mean square error (MSE) of the proposed generalized ratio estimator are derived. Two types of numerical study have been conducted using artificial clustered population and real data application to examine the performance of the proposed estimator over the usual mean per unit estimator under simple random sampling (SRS). Related results of the simulation study show that the proposed estimators provide better estimation results on both real and artificial population over the competing estimators.  相似文献   

2.
The generalized doubly robust estimator is proposed for estimating the average treatment effect (ATE) of multiple treatments based on the generalized propensity score (GPS). In medical researches where observational studies are conducted, estimations of ATEs are usually biased since the covariate distributions could be unbalanced among treatments. To overcome this problem, Imbens [The role of the propensity score in estimating dose-response functions, Biometrika 87 (2000), pp. 706–710] and Feng et al. [Generalized propensity score for estimating the average treatment effect of multiple treatments, Stat. Med. (2011), in press. Available at: http://onlinelibrary.wiley.com/doi/10.1002/sim.4168/abstract] proposed weighted estimators that are extensions of a ratio estimator based on GPS to estimate ATEs with multiple treatments. However, the ratio estimator always produces a larger empirical sample variance than the doubly robust estimator, which estimates an ATE between two treatments based on the estimated propensity score (PS). We conduct a simulation study to compare the performance of our proposed estimator with Imbens’ and Feng et al.’s estimators, and simulation results show that our proposed estimator outperforms their estimators in terms of bias, empirical sample variance and mean-squared error of the estimated ATEs.  相似文献   

3.
We study the non-parametric estimation of a continuous distribution function F based on the partially rank-ordered set (PROS) sampling design. A PROS sampling design first selects a random sample from the underlying population and uses judgement ranking to rank them into partially ordered sets, without measuring the variable of interest. The final measurements are then obtained from one of the partially ordered sets. Considering an imperfect PROS sampling procedure, we first develop the empirical distribution function (EDF) estimator of F and study its theoretical properties. Then, we consider the problem of estimating F, where the underlying distribution is assumed to be symmetric. We also find a unique admissible estimator of F within the class of nondecreasing step functions with jumps at observed values and show the inadmissibility of the EDF. In addition, we introduce a smooth estimator of F and discuss its theoretical properties. Finally, we expand on various numerical illustrations of our results via several simulation studies and a real data application and show the advantages of PROS estimates over their counterparts under the simple random and ranked set sampling designs.  相似文献   

4.
Under stratified random sampling, we develop a kth-order bootstrap bias-corrected estimator of the number of classes θ which exist in a study region. This research extends Smith and van Belle’s (1984) first-order bootstrap bias-corrected estimator under simple random sampling. Our estimator has applicability for many settings including: estimating the number of animals when there are stratified capture periods, estimating the number of species based on stratified random sampling of subunits (say, quadrats) from the region, and estimating the number of errors/defects in a product based on observations from two or more types of inspectors. When the differences between the strata are large, utilizing stratified random sampling and our estimator often results in superior performance versus the use of simple random sampling and its bootstrap or jackknife [Burnham and Overton (1978)] estimator. The superior performance is often associated with more observed classes, and we provide insights into optimal designation of the strata and optimal allocation of sample sectors to strata.  相似文献   

5.
Inference concerning the negative binomial dispersion parameter, denoted by c, is important in many biological and biomedical investigations. Properties of the maximum-likelihood estimator of c and its bias-corrected version have been studied extensively, mainly, in terms of bias and efficiency [W.W. Piegorsch, Maximum likelihood estimation for the negative binomial dispersion parameter, Biometrics 46 (1990), pp. 863–867; S.J. Clark and J.N. Perry, Estimation of the negative binomial parameter κ by maximum quasi-likelihood, Biometrics 45 (1989), pp. 309–316; K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185]. However, not much work has been done on the construction of confidence intervals (C.I.s) for c. The purpose of this paper is to study the behaviour of some C.I. procedures for c. We study, by simulations, three Wald type C.I. procedures based on the asymptotic distribution of the method of moments estimate (mme), the maximum-likelihood estimate (mle) and the bias-corrected mle (bcmle) [K.K. Saha and S.R. Paul, Bias corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics 61 (2005), pp. 179–185] of c. All three methods show serious under-coverage. We further study parametric bootstrap procedures based on these estimates of c, which significantly improve the coverage probabilities. The bootstrap C.I.s based on the mle (Boot-MLE method) and the bcmle (Boot-BCM method) have coverages that are significantly better (empirical coverage close to the nominal coverage) than the corresponding bootstrap C.I. based on the mme, especially for small sample size and highly over-dispersed data. However, simulation results on lengths of the C.I.s show evidence that all three bootstrap procedures have larger average coverage lengths. Therefore, for practical data analysis, the bootstrap C.I. Boot-MLE or Boot-BCM should be used, although Boot-MLE method seems to be preferable over the Boot-BCM method in terms of both coverage and length. Furthermore, Boot-MLE needs less computation than Boot-BCM.  相似文献   

6.
Pseudo‐values have proven very useful in censored data analysis in complex settings such as multi‐state models. It was originally suggested by Andersen et al., Biometrika, 90, 2003, 335 who also suggested to estimate standard errors using classical generalized estimating equation results. These results were studied more formally in Graw et al., Lifetime Data Anal., 15, 2009, 241 that derived some key results based on a second‐order von Mises expansion. However, results concerning large sample properties of estimates based on regression models for pseudo‐values still seem unclear. In this paper, we study these large sample properties in the simple setting of survival probabilities and show that the estimating function can be written as a U‐statistic of second order giving rise to an additional term that does not vanish asymptotically. We further show that previously advocated standard error estimates will typically be too large, although in many practical applications the difference will be of minor importance. We show how to estimate correctly the variability of the estimator. This is further studied in some simulation studies.  相似文献   

7.
This article proposes a novel Pearson-type quasi-maximum likelihood estimator (QMLE) of GARCH(p, q) models. Unlike the existing Gaussian QMLE, Laplacian QMLE, generalized non-Gaussian QMLE, or LAD estimator, our Pearsonian QMLE (PQMLE) captures not just the heavy-tailed but also the skewed innovations. Under strict stationarity and some weak moment conditions, the strong consistency and asymptotic normality of the PQMLE are obtained. With no further efforts, the PQMLE can be applied to other conditionally heteroscedastic models. A simulation study is carried out to assess the performance of the PQMLE. Two applications to four major stock indexes and two exchange rates further highlight the importance of our new method. Heavy-tailed and skewed innovations are often observed together in practice, and the PQMLE now gives us a systematic way to capture these two coexisting features.  相似文献   

8.
It is common for a linear regression model that the error terms display some form of heteroscedasticity and at the same time, the regressors are also linearly correlated. Both of these problems have serious impact on the ordinary least squares (OLS) estimates. In the presence of heteroscedasticity, the OLS estimator becomes inefficient and the similar adverse impact can also be found on the ridge regression estimator that is alternatively used to cope with the problem of multicollinearity. In the available literature, the adaptive estimator has been established to be more efficient than the OLS estimator when there is heteroscedasticity of unknown form. The present article proposes the similar adaptation for the ridge regression setting with an attempt to have more efficient estimator. Our numerical results, based on the Monte Carlo simulations, provide very attractive performance of the proposed estimator in terms of efficiency. Three different existing methods have been used for the selection of biasing parameter. Moreover, three different distributions of the error term have been studied to evaluate the proposed estimator and these are normal, Student's t and F distribution.  相似文献   

9.
Motivated by several practical issues, we consider the problem of estimating the mean of a p-variate population (not necessarily normal) with unknown finite covariance. A quadratic loss function is used. We give a number of estimators (for the mean) with their loss functions admitting expansions to the order of p ?1/2 as p→∞. These estimators contain Stein's [Inadmissibility of the usual estimator for the mean of a multivariate normal population, in Proceedings of the Third Berkeley Symposium in Mathematical Statistics and Probability, Vol. 1, J. Neyman, ed., University of California Press, Berkeley, 1956, pp. 197–206] estimate as a particular case and also contain ‘multiple shrinkage’ estimates improving on Stein's estimate. Finally, we perform a simulation study to compare the different estimates.  相似文献   

10.
Abstract

The availability of some extra information, along with the actual variable of interest, may be easily accessible in different practical situations. A sensible use of the additional source may help to improve the properties of statistical techniques. In this study, we focus on the estimators for calibration and intend to propose a setup where we reply only on first two moments instead of modeling the whole distributional shape. We have proposed an estimator for linear calibration problems and investigated it under normal and skewed environments. We have partitioned its mean squared error into intrinsic and estimation components. We have observed that the bias and mean squared error of the proposed estimator are function of four dimensionless quantities. It is to be noticed that both the classical and the inverse estimators become the special cases of the proposed estimator. Moreover, the mean squared error of the proposed estimator and the exact mean squared error of the inverse estimator coincide. We have also observed that the proposed estimator performs quite well for skewed errors as well. The real data applications are also included in the study for practical considerations.  相似文献   

11.
We present a local density estimator based on first-order statistics. To estimate the density at a point, x, the original sample is divided into subsets and the average minimum sample distance to x over all such subsets is used to define the density estimate at x. The tuning parameter is thus the number of subsets instead of the typical bandwidth of kernel or histogram-based density estimators. The proposed method is similar to nearest-neighbor density estimators but it provides smoother estimates. We derive the asymptotic distribution of this minimum sample distance statistic to study globally optimal values for the number and size of the subsets. Simulations are used to illustrate and compare the convergence properties of the estimator. The results show that the method provides good estimates of a wide variety of densities without changes of the tuning parameter, and that it offers competitive convergence performance.  相似文献   

12.
This paper deals with the problem of maximum likelihood estimation for a mixture of skew Student-t-normal distributions, which is a novel model-based tool for clustering heterogeneous (multiple groups) data in the presence of skewed and heavy-tailed outcomes. We present two analytically simple EM-type algorithms for iteratively computing the maximum likelihood estimates. The observed information matrix is derived for obtaining the asymptotic standard errors of parameter estimates. A small simulation study is conducted to demonstrate the superiority of the skew Student-t-normal distribution compared to the skew t distribution. The proposed methodology is particularly useful for analyzing multimodal asymmetric data as produced by major biotechnological platforms like flow cytometry. We provide such an application with the help of an illustrative example.  相似文献   

13.
This paper proposes an efficient stratified randomized response model based on Chang et al.'s (2004) model. We have obtained the variance of the proposed estimator of πs, the proportion of the respondents in the population belonging to a sensitive group, under proportional and Neyman allocations. It is shown that the estimator based on the proposed model is more efficient than the Chang et al.'s (2004) estimator under both proportional as well as Neyman allocations, Hong et al.'s (1994) estimator and Kim and Warde's (2004) estimator. Numerical illustration and pictorial representation are given in support of the present study.  相似文献   

14.
In this paper we consider the problem of unbiased estimation of the distribution function of an exponential population using order statistics based on a random sample. We present a (unique) unbiased estimator based on a single, say ith, order statistic and study some properties of the estimator for i = 2. We also indicate how this estimator can be utilized to obtain unbiased estimators when a few selected order statistics are available as well as when the sample is selected following an alternative sampling procedure known as ranked set sampling. It is further proved that for a ranked set sample of size two, the proposed estimator is uniformly better than the conventional nonparametric unbiased estimator, further, for a general sample size, a modified ranked set sampling procedure provides an unbiased estimator uniformly better than the conventional nonparametric unbiased estimator based on the usual ranked set sampling procedure.  相似文献   

15.
16.
In this article, maximum likelihood estimator (MLE) as well as Bayes estimator of traffic intensity (ρ) in an M/M/1/∞ queueing model in equilibrium based on number of customers present in the queue at successive departure epochs have been worked out. Estimates of some functions of ρ which provide measures of effectiveness of the queue have also been derived. A comprehensive simulation study starting with the transition probability matrix has been carried out in the last section.  相似文献   

17.
We consider the problem of estimating and testing a general linear hypothesis in a general multivariate linear model, the so-called Growth Curve model, when the p × N observation matrix is normally distributed.

The maximum likelihood estimator (MLE) for the mean is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N. We modify the MLE to an unweighted estimator and propose new tests which we compare with the previous likelihood ratio test (LRT) based on the weighted estimator, i.e., the MLE. We show that the performance of these new tests based on the unweighted estimator is better than the LRT based on the MLE.  相似文献   


18.
In this article, we consider the problem of testing (a) sphericity and (b) intraclass covariance structure under a growth curve model. The maximum likelihood estimator (MLE) for the mean in a growth curve model is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N. The MLE for the covariance matrix is based on the MLE for the mean, which can be very poor for p close to N. For both structures (a) and (b), we modify the MLE for the mean to an unweighted estimator and based on this estimator we propose a new estimator for the covariance matrix. This new estimator leads to new tests for (a) and (b). We also propose two other tests for each structure, which are just based on the sample covariance matrix.

To compare the performance of all four tests we compute for each structure (a) and (b) the attained significance level and the empirical power. We show that one of the tests based on the sample covariance matrix is better than the likelihood ratio test based on the MLE.  相似文献   


19.
This paper considers the issue of estimating the covariance matrix of ordinary least squares estimates in a linear regression model when heteroskedasticity is suspected. We perform Monte Carlo simulation on the White estimator, which is commonly used in.

empirical research, and also on some alternatives based on different bootstrapping schemes. Our results reveal that the White estimator can be considerably biased when the sample size is not very large, that bias correction via bootstrap does not work well, and that the weighted bootstrap estimators tend to display smaller biases than the White estimator and its variants, under both homoskedasticity and heteroskedasticity. Our results also reveal that the presence of (potentially) influential observations in the design matrix plays an important role in the finite-sample performance of the heteroskedasticity-consistent estimators.  相似文献   

20.
In this article, we consider the problem of variable selection in linear regression when multicollinearity is present in the data. It is well known that in the presence of multicollinearity, performance of least square (LS) estimator of regression parameters is not satisfactory. Consequently, subset selection methods, such as Mallow's Cp, which are based on LS estimates lead to selection of inadequate subsets. To overcome the problem of multicollinearity in subset selection, a new subset selection algorithm based on the ridge estimator is proposed. It is shown that the new algorithm is a better alternative to Mallow's Cp when the data exhibit multicollinearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号