首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inverse Gaussian (IG) distribution is widely used to model positively skewed data. An important issue is to develop a powerful goodness-of-fit test for the IG distribution. We propose and examine novel test statistics for testing the IG goodness of fit based on the density-based empirical likelihood (EL) ratio concept. To construct the test statistics, we use a new approach that employs a method of the minimization of the discrimination information loss estimator to minimize Kullback–Leibler type information. The proposed tests are shown to be consistent against wide classes of alternatives. We show that the density-based EL ratio tests are more powerful than the corresponding classical goodness-of-fit tests. The practical efficiency of the tests is illustrated by using real data examples.  相似文献   

2.
The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology is well-known to provide powerful likelihood ratio tests. In the nonparametric context, the classical empirical likelihood (EL) ratio method is often applied in order to efficiently approximate properties of parametric likelihoods, using an approach based on substituting empirical distribution functions for their population counterparts. The optimal parametric likelihood ratio approach is however based on density functions. We develop and analyze the EL ratio approach based on densities in order to test the IG model fit. We show that the proposed test is an improvement over the entropy-based goodness-of-fit test for IG presented by Mudholkar and Tian (2002). Theoretical support is obtained by proving consistency of the new test and an asymptotic proposition regarding the null distribution of the proposed test statistic. Monte Carlo simulations confirm the powerful properties of the proposed method. Real data examples demonstrate the applicability of the density-based EL ratio goodness-of-fit test for an IG assumption in practice.  相似文献   

3.
Bayes methodology provides posterior distribution functions based on parametric likelihoods adjusted for prior distributions. A distribution-free alternative to the parametric likelihood is use of empirical likelihood (EL) techniques, well known in the context of nonparametric testing of statistical hypotheses. Empirical likelihoods have been shown to exhibit many of the properties of conventional parametric likelihoods. In this paper, we propose and examine Bayes factors (BF) methods that are derived via the EL ratio approach. Following Kass and Wasserman (1995), we consider Bayes factors type decision rules in the context of standard statistical testing techniques. We show that the asymptotic properties of the proposed procedure are similar to the classical BF's asymptotic operating characteristics. Although we focus on hypothesis testing, the proposed approach also yields confidence interval estimators of unknown parameters. Monte Carlo simulations were conducted to evaluate the theoretical results as well as to demonstrate the power of the proposed test.  相似文献   

4.
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. These procedures extend the empirical likelihood (EL) method and share common features with generalized empirical likelihood approach. We treat the problems of existence and characterization of the divergence projections of probability distributions on sets of signed finite measures. We give a precise characterization of duality, for the proposed class of estimates and test statistics, which is used to derive their limiting distributions (including the EL estimate and the EL ratio statistic) both under the null hypotheses and under alternatives or misspecification. An approximation to the power function is deduced as well as the sample size which ensures a desired power for a given alternative.  相似文献   

5.
Sample entropy based tests, methods of sieves and Grenander estimation type procedures are known to be very efficient tools for assessing normality of underlying data distributions, in one-dimensional nonparametric settings. Recently, it has been shown that the density based empirical likelihood (EL) concept extends and standardizes these methods, presenting a powerful approach for approximating optimal parametric likelihood ratio test statistics, in a distribution-free manner. In this paper, we discuss difficulties related to constructing density based EL ratio techniques for testing bivariate normality and propose a solution regarding this problem. Toward this end, a novel bivariate sample entropy expression is derived and shown to satisfy the known concept related to bivariate histogram density estimations. Monte Carlo results show that the new density based EL ratio tests for bivariate normality behave very well for finite sample sizes. To exemplify the excellent applicability of the proposed approach, we demonstrate a real data example.  相似文献   

6.
We develop a novel nonparametric likelihood ratio test for independence between two random variables using a technique that is free of the common constraints of defining a given set of specific dependence structures. Our methodology revolves around an exact density-based empirical likelihood ratio test statistic that approximates in a distribution-free fashion the corresponding most powerful parametric likelihood ratio test. We demonstrate that the proposed test is very powerful in detecting general structures of dependence between two random variables, including nonlinear and/or random-effect dependence structures. An extensive Monte Carlo study confirms that the proposed test is superior to the classical nonparametric procedures across a variety of settings. The real-world applicability of the proposed test is illustrated using data from a study of biomarkers associated with myocardial infarction. Supplementary materials for this article are available online.  相似文献   

7.
The main purpose of this paper is to introduce first a new family of empirical test statistics for testing a simple null hypothesis when the vector of parameters of interest is defined through a specific set of unbiased estimating functions. This family of test statistics is based on a distance between two probability vectors, with the first probability vector obtained by maximizing the empirical likelihood (EL) on the vector of parameters, and the second vector defined from the fixed vector of parameters under the simple null hypothesis. The distance considered for this purpose is the phi-divergence measure. The asymptotic distribution is then derived for this family of test statistics. The proposed methodology is illustrated through the well-known data of Newcomb's measurements on the passage time for light. A simulation study is carried out to compare its performance with that of the EL ratio test when confidence intervals are constructed based on the respective statistics for small sample sizes. The results suggest that the ‘empirical modified likelihood ratio test statistic’ provides a competitive alternative to the EL ratio test statistic, and is also more robust than the EL ratio test statistic in the presence of contamination in the data. Finally, we propose empirical phi-divergence test statistics for testing a composite null hypothesis and present some asymptotic as well as simulation results for evaluating the performance of these test procedures.  相似文献   

8.
The empirical likelihood (EL) technique is a powerful nonparametric method with wide theoretical and practical applications. In this article, we use the EL methodology in order to develop simple and efficient goodness-of-fit tests for normality based on the dependence between moments that characterizes normal distributions. The new empirical likelihood ratio (ELR) tests are exact and are shown to be very powerful decision rules based on small to moderate sample sizes. Asymptotic results related to the Type I error rates of the proposed tests are presented. We present a broad Monte Carlo comparison between different tests for normality, confirming the preference of the proposed method from a power perspective. A real data example is provided.  相似文献   

9.
A multivariate two-sample testing problem is one of the most important topics in nonparametric statistics. One of the multivariate two-sample testing problems based on the Jure?ková–Kalina ranks of distance is discussed in this article. Further, a multivariate Wilcoxon-type test is proposed for testing the equality of two continuous distribution functions. Simulations are used to investigate the power of this test for the two-sided alternative with various population distributions. The results show that the proposed test statistic is more suitable than various existing statistics for testing a shift in the locationt and location-scale parameters.  相似文献   

10.
Nonparametric control charts are useful in statistical process control (SPC) when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate SPC methodology for monitoring location parameter based on adapting a well-known nonparametric method, empirical likelihood (EL), to on-line sequential monitoring. The weighted version of EL ratio test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control (EWMA) scheme, which results in a nonparametric counterpart of the classical multivariate EWMA (MEWMA). Some theoretical and numerical studies show that benefiting from using EL, the proposed chart possesses some favorable features. First, it is a data-driven scheme and thus is more robust to various multivariate non-normal data than the MEWMA chart under the in-control (IC) situation. Second, it is transformation-invariant and avoids the estimation of covariance matrix from the historical data by studentizing internally, and hence its IC performance is less deteriorated when the number of reference sample is small. Third, in comparison with the existing approaches, it is more efficient in detecting small and moderate shifts for multivariate non-normal process.  相似文献   

11.
Powerful entropy-based tests for normality, uniformity and exponentiality have been well addressed in the statistical literature. The density-based empirical likelihood approach improves the performance of these tests for goodness-of-fit, forming them into approximate likelihood ratios. This method is extended to develop two-sample empirical likelihood approximations to optimal parametric likelihood ratios, resulting in an efficient test based on samples entropy. The proposed and examined distribution-free two-sample test is shown to be very competitive with well-known nonparametric tests. For example, the new test has high and stable power detecting a nonconstant shift in the two-sample problem, when Wilcoxon’s test may break down completely. This is partly due to the inherent structure developed within Neyman-Pearson type lemmas. The outputs of an extensive Monte Carlo analysis and real data example support our theoretical results. The Monte Carlo simulation study indicates that the proposed test compares favorably with the standard procedures, for a wide range of null and alternative distributions.  相似文献   

12.
An adaptive test is proposed for the problem of testing the difference in survival distributions when the shape of the hazard ratio is unknown, hence the efficient test is unknown. The proposed adaptive test selects a test statistic from a finite set of the weighted logrank statistics T on the basis of the estimates of the efficiencies of the tests in T for given data. The efficiency estimator uses the length of the test based nonparametric confidence interval for the shift in a time transformed shift model. The suggested adaptive test is shown to be asymptotically efficient among the tests in T under the time transformed shift model and conditions commonly used in survival analysis. Simulations demonstrate that the adaptive test enjoys good small sample properties and in most situations is more powerful than the test using the maximum of the tests in T.  相似文献   

13.
When the survival distribution in a treatment group is a mixture of two distributions of the same family, traditional parametric methods that ignore the existence of mixture components or the nonparametric methods may not be very powerful. We develop a modified likelihood ratio test (MLRT) for testing homogeneity in a two sample problem with censored data and compare the actual type I error and power of the MLRT with that nonparametric log-rank test and parametric test through Monte-Carlo simulations. The proposed test is also applied to analyze data from a clinical trial on early breast cancer.  相似文献   

14.
ABSTRACT

Empirical likelihood (EL) is a nonparametric method based on observations. EL method is defined as a constrained optimization problem. The solution of this constrained optimization problem is carried on using duality approach. In this study, we propose an alternative algorithm to solve this constrained optimization problem. The new algorithm is based on a newton-type algorithm for Lagrange multipliers for the constrained optimization problem. We provide a simulation study and a real data example to compare the performance of the proposed algorithm with the classical algorithm. Simulation and the real data results show that the performance of the proposed algorithm is comparable with the performance of the existing algorithm in terms of efficiencies and cpu-times.  相似文献   

15.
A two sample test of likelihood ratio type is proposed, assuming normal distribution theory, for testing the hypothesis that two samples come from identical normal populations versus the alternative that the populations are normal but vary in mean value and variance with one population having a smaller mean and smaller variance than the other. The small sample and large sample distribution of the proposed statistic are derived assuming normality. Some computations are presented which show the speed of convergence of small sample critical values to their asymptotic counterparts. Comparisons of local power of the proposed test are made with several potential competing tests. Asymptotics for the test statistic are derived when underlying distributions are not necessarily normal.  相似文献   

16.
In many case-control studies, it is common to utilize paired data when treatments are being evaluated. In this article, we propose and examine an efficient distribution-free test to compare two independent samples, where each is based on paired observations. We extend and modify the density-based empirical likelihood ratio test presented by Gurevich and Vexler [7] to formulate an appropriate parametric likelihood ratio test statistic corresponding to the hypothesis of our interest and then to approximate the test statistic nonparametrically. We conduct an extensive Monte Carlo study to evaluate the proposed test. The results of the performed simulation study demonstrate the robustness of the proposed test with respect to values of test parameters. Furthermore, an extensive power analysis via Monte Carlo simulations confirms that the proposed method outperforms the classical and general procedures in most cases related to a wide class of alternatives. An application to a real paired data study illustrates that the proposed test can be efficiently implemented in practice.  相似文献   

17.
In nonparametric statistics, a hypothesis testing problem based on the ranks of the data gives rise to two separate permutation sets corresponding to the null and to the alternative hypothesis, respectively. A modification of Critchlow's unified approach to hypothesis testing is proposed. By defining the distance between permutation sets to be the average distance between pairs of permutations, one from each set, various test statistics are derived for the multi-sample location problem and the two-way layout. The asymptotic distributions of the test statistics are computed under both the null and alternative hypotheses. Some comparisons are made on the basis of the asymptotic relative efficiency.  相似文献   

18.
The regression model with randomly censored data has been intensively investigated. In this article, we consider a goodness-of-fit test for this model. Empirical likelihood (EL) tests are constructed. The asymptotic distributions of the test statistic under null hypothesis and the local alternative hypothesis are given. Simulations are carried out to illustrate the methodology.  相似文献   

19.
A nonparametric test procedure is proposed for the analysis of randomized complete block designs. Such a procedure may be carried out graphically in the form of a Shewhart control chart. Exact and asymptotic critical values are given for the implementation of the proposed procedure. A Monte Carlo study is made to compare the powers of the proposed procedure to those of analysis of variance, the analysis of means, and the Friedman procedures. Results of the study indicate that the proposed procedure has superior power performance when testing against slippage alternative hypotheses under heavy-tailed distributions such as the Cauchy distribution. However, when testing against symmetric alternatives under light-tailed distributions, the proposed procedure does not perform well  相似文献   

20.
In the recent years, the notion of data depth has been used in nonparametric multivariate data analysis since it gives natural ‘centre-outward’ ordering of multivariate data points with respect to the given data cloud. In the literature, various nonparametric tests are developed for testing equality of location of two multivariate distributions based on data depth. Here, we define two nonparametric tests based on two different test statistic for testing equality of locations of two multivariate distributions. In the present work, we compare the performance of these tests with the tests developed by Li and Liu [New nonparametric tests of multivariate locations and scales using data depth. Statist Sci. 2004;(1):686–696] for testing equality of locations of two multivariate distributions. Comparison in terms of power is done for multivariate symmetric and skewed distributions using simulation for three popular depth functions. Application of tests to real life data is provided. Conclusion and recommendations are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号