首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composite quantile regression (CQR) has been developed for the robust and efficient estimation of regression coefficients in a liner regression model. By employing the idea of the CQR, we propose a new regression method, called composite kernel quantile regression (CKQR), which uses the sum of multiple check functions as a loss in reproducing kernel Hilbert spaces for the robust estimation of a nonlinear regression function. The numerical results demonstrate the usefulness of the proposed CKQR in estimating both conditional nonlinear mean and quantile functions.  相似文献   

2.
Classical statistical approaches for multiclass probability estimation are typically based on regression techniques such as multiple logistic regression, or density estimation approaches such as linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). These methods often make certain assumptions on the form of probability functions or on the underlying distributions of subclasses. In this article, we develop a model-free procedure to estimate multiclass probabilities based on large-margin classifiers. In particular, the new estimation scheme is employed by solving a series of weighted large-margin classifiers and then systematically extracting the probability information from these multiple classification rules. A main advantage of the proposed probability estimation technique is that it does not impose any strong parametric assumption on the underlying distribution and can be applied for a wide range of large-margin classification methods. A general computational algorithm is developed for class probability estimation. Furthermore, we establish asymptotic consistency of the probability estimates. Both simulated and real data examples are presented to illustrate competitive performance of the new approach and compare it with several other existing methods.  相似文献   

3.
Quantile regression can provide more useful information on the conditional distribution of a response variable given covariates while classical regression provides informations on the conditional mean alone. In this paper, we propose a structured quantile estimation methodology in a nonparametric function estimation setup. Through the functional analysis of variance decomposition, the optimization of the proposed method can be solved using a series of quadratic and linear programmings. Our method automatically selects relevant covariates by adopting a lasso-type penalty. The performance of the proposed methodology is illustrated through numerical examples on both simulated and real data.  相似文献   

4.
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. There is a great amount of work about linear and nonlinear QR models. Specifically, nonparametric estimation of the conditional quantiles received particular attention, due to its model flexibility. However, nonparametric QR techniques are limited in the number of covariates. Dimension reduction offers a solution to this problem by considering low-dimensional smoothing without specifying any parametric or nonparametric regression relation. The existing dimension reduction techniques focus on the entire conditional distribution. We, on the other hand, turn our attention to dimension reduction techniques for conditional quantiles and introduce a new method for reducing the dimension of the predictor $$\mathbf {X}$$. The novelty of this paper is threefold. We start by considering a single index quantile regression model, which assumes that the conditional quantile depends on $$\mathbf {X}$$ through a single linear combination of the predictors, then extend to a multi-index quantile regression model, and finally, generalize the proposed methodology to any statistical functional of the conditional distribution. The performance of the methodology is demonstrated through simulation examples and real data applications. Our results suggest that this method has a good finite sample performance and often outperforms the existing methods.  相似文献   

5.
In this paper, we consider the estimation problem of multiple conditional quantile functions with right censored survival data. To account for censoring in estimating a quantile function, weighted quantile regression (WQR) has been developed by using inverse-censoring-probability weights. However, the estimated quantile functions from the WQR often cross each other and consequently violate the basic properties of quantiles. To avoid quantile crossing, we propose non-crossing weighted multiple quantile regression (NWQR), which estimates multiple conditional quantile functions simultaneously. We further propose the adaptive sup-norm regularized NWQR (ANWQR) to perform simultaneous estimation and variable selection. The large sample properties of the NWQR and ANWQR estimators are established under certain regularity conditions. The proposed methods are evaluated through simulation studies and analysis of a real data set.  相似文献   

6.
Value at Risk (VaR) forecasts can be produced from conditional autoregressive VaR models, estimated using quantile regression. Quantile modeling avoids a distributional assumption, and allows the dynamics of the quantiles to differ for each probability level. However, by focusing on a quantile, these models provide no information regarding expected shortfall (ES), which is the expectation of the exceedances beyond the quantile. We introduce a method for predicting ES corresponding to VaR forecasts produced by quantile regression models. It is well known that quantile regression is equivalent to maximum likelihood based on an asymmetric Laplace (AL) density. We allow the density's scale to be time-varying, and show that it can be used to estimate conditional ES. This enables a joint model of conditional VaR and ES to be estimated by maximizing an AL log-likelihood. Although this estimation framework uses an AL density, it does not rely on an assumption for the returns distribution. We also use the AL log-likelihood for forecast evaluation, and show that it is strictly consistent for the joint evaluation of VaR and ES. Empirical illustration is provided using stock index data. Supplementary materials for this article are available online.  相似文献   

7.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

8.
Tianqing Liu 《Statistics》2016,50(1):89-113
This paper proposes an empirical likelihood-based weighted (ELW) quantile regression approach for estimating the conditional quantiles when some covariates are missing at random. The proposed ELW estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness is correctly specified. The limiting covariance matrix of the ELW estimator can be estimated by a resampling technique, which does not involve nonparametric density estimation or numerical derivatives. Simulation results show that the ELW method works remarkably well in finite samples. A real data example is used to illustrate the proposed ELW method.  相似文献   

9.
In this article, we investigate a new procedure for the estimation of a linear quantile regression with possibly right-censored responses. Contrary to the main literature on the subject, we propose in this context to circumvent the formulation of conditional quantiles through the so-called “check” loss function that stems from the influential work of Koenker and Bassett (1978). Instead, our suggestion is here to estimate the quantile coefficients by minimizing an alternative measure of distance. In fact, our approach could be qualified as a generalization in a parametric regression framework of the technique consisting in inverting the conditional distribution of the response given the covariates. This is motivated by the knowledge that the main literature for censored data already relies on some nonparametric conditional distribution estimation as well. The ideas of effective dimension reduction are then exploited in order to accommodate for higher dimensional settings as well in this context. Extensive numerical results then suggest that such an approach provides a strongly competitive procedure to the classical approaches based on the check function, in fact both for complete and censored observations. From a theoretical prospect, both consistency and asymptotic normality of the proposed estimator for linear regression are obtained under classical regularity conditions. As a by-product, several asymptotic results on some “double-kernel” version of the conditional Kaplan–Meier distribution estimator based on effective dimension reduction, and its corresponding density estimator, are also obtained and may be of interest on their own. A brief application of our procedure to quasar data then serves to further highlight the relevance of the latter for quantile regression estimation with censored data.  相似文献   

10.
Quantile regression is a very important statistical tool for predictive modelling and risk assessment. For many applications, conditional quantile at different levels are estimated separately. Consequently the monotonicity of conditional quantiles can be violated when quantile regression curves cross each other. In this paper, we propose a new Bayesian multiple quantile regression based on heavy tailed distribution for non-crossing. We consider a linear quantile regression model for simultaneous Bayesian estimation of multiple quantiles based on a regularly varying assumptions. The numerical and competitive performance of the proposed method is illustrated by simulation.  相似文献   

11.
A novel approach to quantile estimation in multivariate linear regression models with change-points is proposed: the change-point detection and the model estimation are both performed automatically, by adopting either the quantile-fused penalty or the adaptive version of the quantile-fused penalty. These two methods combine the idea of the check function used for the quantile estimation and the L1 penalization principle known from the signal processing and, unlike some standard approaches, the presented methods go beyond typical assumptions usually required for the model errors, such as sub-Gaussian or normal distribution. They can effectively handle heavy-tailed random error distributions, and, in general, they offer a more complex view on the data as one can obtain any conditional quantile of the target distribution, not just the conditional mean. The consistency of detection is proved and proper convergence rates for the parameter estimates are derived. The empirical performance is investigated via an extensive comparative simulation study and practical utilization is demonstrated using a real data example.  相似文献   

12.
ABSTRACT

This paper proposes a power-transformed linear quantile regression model for the residual lifetime of competing risks data. The proposed model can describe the association between any quantile of a time-to-event distribution among survivors beyond a specific time point and the covariates. Under covariate-dependent censoring, we develop an estimation procedure with two steps, including an unbiased monotone estimating equation for regression parameters and cumulative sum processes for the Box–Cox transformation parameter. The asymptotic properties of the estimators are also derived. We employ an efficient bootstrap method for the estimation of the variance–covariance matrix. The finite-sample performance of the proposed approaches are evaluated through simulation studies and a real example.  相似文献   

13.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

14.
In this paper we propose a quantile survival model to analyze censored data. This approach provides a very effective way to construct a proper model for the survival time conditional on some covariates. Once a quantile survival model for the censored data is established, the survival density, survival or hazard functions of the survival time can be obtained easily. For illustration purposes, we focus on a model that is based on the generalized lambda distribution (GLD). The GLD and many other quantile function models are defined only through their quantile functions, no closed‐form expressions are available for other equivalent functions. We also develop a Bayesian Markov Chain Monte Carlo (MCMC) method for parameter estimation. Extensive simulation studies have been conducted. Both simulation study and application results show that the proposed quantile survival models can be very useful in practice.  相似文献   

15.
A number of nonstationary models have been developed to estimate extreme events as function of covariates. A quantile regression (QR) model is a statistical approach intended to estimate and conduct inference about the conditional quantile functions. In this article, we focus on the simultaneous variable selection and parameter estimation through penalized quantile regression. We conducted a comparison of regularized Quantile Regression model with B-Splines in Bayesian framework. Regularization is based on penalty and aims to favor parsimonious model, especially in the case of large dimension space. The prior distributions related to the penalties are detailed. Five penalties (Lasso, Ridge, SCAD0, SCAD1 and SCAD2) are considered with their equivalent expressions in Bayesian framework. The regularized quantile estimates are then compared to the maximum likelihood estimates with respect to the sample size. A Markov Chain Monte Carlo (MCMC) algorithms are developed for each hierarchical model to simulate the conditional posterior distribution of the quantiles. Results indicate that the SCAD0 and Lasso have the best performance for quantile estimation according to Relative Mean Biais (RMB) and the Relative Mean-Error (RME) criteria, especially in the case of heavy distributed errors. A case study of the annual maximum precipitation at Charlo, Eastern Canada, with the Pacific North Atlantic climate index as covariate is presented.  相似文献   

16.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

17.
分位数回归技术综述   总被引:16,自引:0,他引:16  
普通最小二乘回归建立了在自变量X=x下因变量Y的条件均值与X的关系的线性模型。而分位数回归(Quantile Regression)则利用自变量X和因变量y的条件分位数进行建模。与普通的均值回归相比,它能充分反映自变量X对于因变量y的分布的位置、刻度和形状的影响,有着十分广泛的应用,尤其是对于一些非常关注尾部特征的情况。文章介绍了分位数回归的概念以及分位数回归的估计、检验和拟合优度,回顾了分位数回归的发展过程以及其在一些经济研究领域中的应用,最后做了总结。  相似文献   

18.
Single index model conditional quantile regression is proposed in order to overcome the dimensionality problem in nonparametric quantile regression. In the proposed method, the Bayesian elastic net is suggested for single index quantile regression for estimation and variables selection. The Gaussian process prior is considered for unknown link function and a Gibbs sampler algorithm is adopted for posterior inference. The results of the simulation studies and numerical example indicate that our propose method, BENSIQReg, offers substantial improvements over two existing methods, SIQReg and BSIQReg. The BENSIQReg has consistently show a good convergent property, has the least value of median of mean absolute deviations and smallest standard deviations, compared to the other two methods.  相似文献   

19.
The first known bivariate distribution with gamma and beta marginals is introduced. Various representations are derived for its joint probability density function (pdf), joint cumulative distribution function (cdf), product moments, conditional pdfs, conditional cdfs, conditional moments, joint moment generating function, joint characteristic function and entropies. The method of maximum likelihood and the method of moments are used to derive the associated estimation procedures as well as the Fisher information matrix, variance–covariance matrix and the profile likelihood confidence intervals. An application to drought data from Nebraska is provided. Some other applications are also discussed. Finally, an extension of the bivariate distribution to the multivariate case is proposed.  相似文献   

20.
Varying coefficient models are flexible models to describe the dynamic structure in longitudinal data. Quantile regression, more than mean regression, gives partial information on the conditional distribution of the response given the covariates. In the literature, the focus has been so far mostly on homoscedastic quantile regression models, whereas there is an interest in looking into heteroscedastic modelling. This paper contributes to the area by modelling the heteroscedastic structure and estimating it from the data, together with estimating the quantile functions. The use of the proposed methods is illustrated on real-data applications. The finite-sample behaviour of the methods is investigated via a simulation study, which includes a comparison with an existing method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号