首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combining estimating functions for volatility   总被引:1,自引:0,他引:1  
Accurate estimates of volatility are needed in risk management. Generalized autoregressive conditional heteroscedastic (GARCH) models and random coefficient autoregressive (RCA) models have been used for volatility modelling. Following Heyde [1997. Quasi-likelihood and its Applications. Springer, New York], volatility estimates are obtained by combining two different estimating functions. It turns out that the combined estimating function for the parameter in autoregressive processes with GARCH errors and RCA models contains maximum information. The combination of the least squares (LS) estimating function and the least absolute deviation (LAD) estimating function with application to GARCH model error identification is discussed as an application.  相似文献   

2.
A median-based estimate of the location (i.e. intercept) parameter in an autoregressive time series is considered. Specifically, the asymptotic joint distribution of the location estimate and a location invariant estimate of the AR parameter vector is derived. Applications of this result to rank-based estimates are briefly discussed and illustrated with a numerical example.  相似文献   

3.
A Markov chain Monte Carlo (MCMC) approach, called a reversible jump MCMC, is employed in model selection and parameter estimation for possibly non-stationary and non-linear time series data. The non-linear structure is modelled by the asymmetric momentum threshold autoregressive process (MTAR) of Enders & Granger (1998) or by the asymmetric self-exciting threshold autoregressive process (SETAR) of Tong (1990). The non-stationary and non-linear feature is represented by the MTAR (or SETAR) model in which one ( 𝜌 1 ) of the AR coefficients is greater than one, and the other ( 𝜌 2 ) is smaller than one. The other non-stationary and linear, stationary and nonlinear, and stationary and linear features, represented respectively by ( 𝜌 1 = 𝜌 2 = 1 ), ( 𝜌 1 p 𝜌 2 < 1 ) and ( 𝜌 1 = 𝜌 2 < 1 ), are also considered as possible models. The reversible jump MCMC provides estimates of posterior probabilities for these four different models as well as estimates of the AR coefficients 𝜌 1 and 𝜌 2 . The proposed method is illustrated by analysing six series of US interest rates in terms of model selection, parameter estimation, and forecasting.  相似文献   

4.
Many estimation procedures for quantitative linear models with autocorrelated errors have been proposed in the literature. A number of these procedures have been compared in various ways for different sample sizes and autocorrelation parameters values and for structured or random explanatory vaiables. In this paper, we revisit three situations that were considered to some extent in previous studies, by comparing ten estimation procedures: Ordinary Least Squares (OLS), Generalized Least Squares (GLS), estimated Generalized Least Squares (six procedures), Maximum Likelihood (ML), and First Differences (FD). The six estimated GLS procedures and the ML procedure differ in the way the error autocovariance matrix is estimated. The three situations can be defined as follows: Case 1, the explanatory variable x in the simple linear regression is fixed; Case 2,x is purely random; and Case 3x is first-order autoregressive. Following a theoretical presentation, the ten estimation procedures are compared in a Monte Carlo study conducted in the time domain, where the errors are first-order autoregressive in Cases 1-3. The measure of comparison for the estimation procedures is their efficiency relative to OLS. It is evaluated as a function of the time series length and the magnitude and sign of the error autocorrelation parameter. Overall, knowledge of the model of the time series process generating the errors enhances efficiency in estimated GLS. Differences in the efficiency of estimation procedures between Case 1 and Cases 2 and 3 as well as differences in efficiency among procedures in a given situation are observed and discussed.  相似文献   

5.
Time series regression models have been widely studied in the literature by several authors. However, statistical analysis of replicated time series regression models has received little attention. In this paper, we study the application of the quasi-least squares method to estimate the parameters in a replicated time series model with errors that follow an autoregressive process of order p. We also discuss two other established methods for estimating the parameters: maximum likelihood assuming normality and the Yule-Walker method. When the number of repeated measurements is bounded and the number of replications n goes to infinity, the regression and the autocorrelation parameters are consistent and asymptotically normal for all three methods of estimation. Basically, the three methods estimate the regression parameter efficiently and differ in how they estimate the autocorrelation. When p=2, for normal data we use simulations to show that the quasi-least squares estimate of the autocorrelation is undoubtedly better than the Yule-Walker estimate. And the former estimate is as good as the maximum likelihood estimate almost over the entire parameter space.  相似文献   

6.
7.
Longitudinal data analysis in epidemiological settings is complicated by large multiplicities of short time series and the occurrence of missing observations. To handle such difficulties Rosner & Muñoz (1988) developed a weighted non-linear least squares algorithm for estimating parameters for first-order autoregressive (AR1) processes with time-varying covariates. This method proved efficient when compared to complete case procedures. Here that work is extended by (1) introducing a different estimation procedure based on the EM algorithm, and (2) formulating estimation techniques for second-order autoregressive models. The second development is important because some of the intended areas of application (adult pulmonary function decline, childhood blood pressure) have autocorrelation functions which decay more slowly than the geometric rate imposed by an AR1 model. Simulation studies are used to compare the three methodologies (non-linear, EM based and complete case) with respect to bias, efficiency and coverage both in the presence and in the absence of time-varying covariates. Differing degrees and mechanisms of missingness are examined. Preliminary results indicate the non-linear approach to be the method of choice: it has high efficiency and is easily implemented. An illustrative example concerning pulmonary function decline in the Netherlands is analyzed using this method.  相似文献   

8.
Observations collected over time are often autocorrelated rather than independent, and sometimes include observations below or above detection limits (i.e. censored values reported as less or more than a level of detection) and/or missing data. Practitioners commonly disregard censored data cases or replace these observations with some function of the limit of detection, which often results in biased estimates. Moreover, parameter estimation can be greatly affected by the presence of influential observations in the data. In this paper we derive local influence diagnostic measures for censored regression models with autoregressive errors of order p (hereafter, AR(p)‐CR models) on the basis of the Q‐function under three useful perturbation schemes. In order to account for censoring in a likelihood‐based estimation procedure for AR(p)‐CR models, we used a stochastic approximation version of the expectation‐maximisation algorithm. The accuracy of the local influence diagnostic measure in detecting influential observations is explored through the analysis of empirical studies. The proposed methods are illustrated using data, from a study of total phosphorus concentration, that contain left‐censored observations. These methods are implemented in the R package ARCensReg.  相似文献   

9.
This paper considers quantile regression for a wide class of time series models including autoregressive and moving average (ARMA) models with asymmetric generalized autoregressive conditional heteroscedasticity errors. The classical mean‐variance models are reinterpreted as conditional location‐scale models so that the quantile regression method can be naturally geared into the considered models. The consistency and asymptotic normality of the quantile regression estimator is established in location‐scale time series models under mild conditions. In the application of this result to ARMA‐generalized autoregressive conditional heteroscedasticity models, more primitive conditions are deduced to obtain the asymptotic properties. For illustration, a simulation study and a real data analysis are provided.  相似文献   

10.
In this paper, we expand a first-order nonlinear autoregressive (AR) model with skew normal innovations. A semiparametric method is proposed to estimate a nonlinear part of model by using the conditional least squares method for parametric estimation and the nonparametric kernel approach for the AR adjustment estimation. Then computational techniques for parameter estimation are carried out by the maximum likelihood (ML) approach using Expectation-Maximization (EM) type optimization and the explicit iterative form for the ML estimators are obtained. Furthermore, in a simulation study and a real application, the accuracy of the proposed methods is verified.  相似文献   

11.
Cordeiro and Andrade [Transformed generalized linear models. J Stat Plan Inference. 2009;139:2970–2987] incorporated the idea of transforming the response variable to the generalized autoregressive moving average (GARMA) model, introduced by Benjamin et al. [Generalized autoregressive moving average models. J Am Stat Assoc. 2003;98:214–223], thus developing the transformed generalized autoregressive moving average (TGARMA) model. The goal of this article is to develop the TGARMA model for symmetric continuous conditional distributions with a possible nonlinear structure for the mean that enables the fitting of a wide range of models to several time series data types. We derive an iterative process for estimating the parameters of the new model by maximum likelihood and obtain a simple formula to estimate the parameter that defines the transformation of the response variable. Furthermore, we determine the moments of the original dependent variable which generalize previous published results. We illustrate the theory by means of real data sets and evaluate the results developed through simulation studies.  相似文献   

12.
In the univariate framework, two problems of testing the nonlinearity are investigated in Hwang and Basawa. The first one is concerned with the testing problem for a nonlinear class contiguous to the AR(1) process. The second one is focused on the testing problem of the ARCH model contiguous to the AR(1) models. In each case, an efficient test of linearity was obtained, the local asymptotic normality (LAN) was proved, an efficient test of linearity was constructed, and the asymptotic power function was derived. All these results were obtained under the assumption where the parameter of the time series model is assumed to be known. In practical situation, this parameter is unspecified and its estimation induces an error that has an impact on the asymptotic limit distribution. A new method for the good evaluation of this error is introduced and investigated in the present article. Consequently, its application allows us to preserve the local asymptotic optimality with the estimated parameter. An extension to testing in class of ARCH models contiguous to p-order autoregressive processes is obtained. The LAN property plays a fundamental role in the present study.  相似文献   

13.
Abstract

In a quantitative linear model with errors following a stationary Gaussian, first-order autoregressive or AR(1) process, Generalized Least Squares (GLS) on raw data and Ordinary Least Squares (OLS) on prewhitened data are efficient methods of estimation of the slope parameters when the autocorrelation parameter of the error AR(1) process, ρ, is known. In practice, ρ is generally unknown. In the so-called two-stage estimation procedures, ρ is then estimated first before using the estimate of ρ to transform the data and estimate the slope parameters by OLS on the transformed data. Different estimators of ρ have been considered in previous studies. In this article, we study nine two-stage estimation procedures for their efficiency in estimating the slope parameters. Six of them (i.e., three noniterative, three iterative) are based on three estimators of ρ that have been considered previously. Two more (i.e., one noniterative, one iterative) are based on a new estimator of ρ that we propose: it is provided by the sample autocorrelation coefficient of the OLS residuals at lag 1, denoted r(1). Lastly, REstricted Maximum Likelihood (REML) represents a different type of two-stage estimation procedure whose efficiency has not been compared to the others yet. We also study the validity of the testing procedures derived from GLS and the nine two-stage estimation procedures. Efficiency and validity are analyzed in a Monte Carlo study. Three types of explanatory variable x in a simple quantitative linear model with AR(1) errors are considered in the time domain: Case 1, x is fixed; Case 2, x is purely random; and Case 3, x follows an AR(1) process with the same autocorrelation parameter value as the error AR(1) process. In a preliminary step, the number of inadmissible estimates and the efficiency of the different estimators of ρ are compared empirically, whereas their approximate expected value in finite samples and their asymptotic variance are derived theoretically. Thereafter, the efficiency of the estimation procedures and the validity of the derived testing procedures are discussed in terms of the sample size and the magnitude and sign of ρ. The noniterative two-stage estimation procedure based on the new estimator of ρ is shown to be more efficient for moderate values of ρ at small sample sizes. With the exception of small sample sizes, REML and its derived F-test perform the best overall. The asymptotic equivalence of two-stage estimation procedures, besides REML, is observed empirically. Differences related to the nature, fixed or random (uncorrelated or autocorrelated), of the explanatory variable are also discussed.  相似文献   

14.
One way that has been used for identifying and estimating threshold autoregressive (TAR) models for nonlinear time series follows the Markov chain Monte Carlo (MCMC) approach via the Gibbs sampler. This route has major computational difficulties, specifically, in getting convergence to the parameter distributions. In this article, a new procedure for identifying a TAR model and for estimating its parameters is developed by following the reversible jump MCMC procedure. It is found that the proposed procedure conveys a Markov chain with convergence properties.  相似文献   

15.
We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co-workers to the mixture autoregressive (MAR) model for the modelling of non-linear time series. The models consist of a mixture of K stationary or non-stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do.  相似文献   

16.
A stationary bilinear (SB) model can be used to describe processes with a time-varying degree of persistence that depends on past shocks. This study develops methods for Bayesian inference, model comparison, and forecasting in the SB model. Using monthly U.K. inflation data, we find that the SB model outperforms the random walk, first-order autoregressive AR(1), and autoregressive moving average ARMA(1,1) models in terms of root mean squared forecast errors. In addition, the SB model is superior to these three models in terms of predictive likelihood for the majority of forecast observations.  相似文献   

17.
In this paper, we introduce the class of beta seasonal autoregressive moving average (βSARMA) models for modelling and forecasting time series data that assume values in the standard unit interval. It generalizes the class of beta autoregressive moving average models [Rocha AV and Cribari-Neto F. Beta autoregressive moving average models. Test. 2009;18(3):529–545] by incorporating seasonal dynamics to the model dynamic structure. Besides introducing the new class of models, we develop parameter estimation, hypothesis testing inference, and diagnostic analysis tools. We also discuss out-of-sample forecasting. In particular, we provide closed-form expressions for the conditional score vector and for the conditional Fisher information matrix. We also evaluate the finite sample performances of conditional maximum likelihood estimators and white noise tests using Monte Carlo simulations. An empirical application is presented and discussed.  相似文献   

18.
ABSTRACT

This article presents a new test for unit roots based on least absolute deviation estimation specially designed to work for time series with autoregressive errors. The methodology used is a bootstrap scheme based on estimating a model and then the innovations. The resampling part is performed under the null hypothesis and, as it is customary in bootstrap procedures, is automatic and does not rely on the calculation of any nuisance parameter. The validity of the procedure is established and the asymptotic distribution of the statistic proposed is proved to converge to the correct distribution. To analyze the performance of the test for finite samples, a Monte Carlo study is conducted showing a very good behavior in many different situations.  相似文献   

19.
A common practice in time series analysis is to fit a centered model to the mean-corrected data set. For stationary autoregressive moving-average (ARMA) processes, as far as the parameter estimation is concerned, fitting an ARMA model without intercepts to the mean-corrected series is asymptotically equivalent to fitting an ARMA model with intercepts to the observed series. We show that, related to the parameter least squares estimation of periodic ARMA models, the second approach can be arbitrarily more efficient than the mean-corrected counterpart. This property is illustrated by means of a periodic first-order autoregressive model. The asymptotic variance of the estimators for both approaches is derived. Moreover, empirical experiments based on simulations investigate the finite sample properties of the estimators.  相似文献   

20.
Non-Gaussian Conditional Linear AR(1) Models   总被引:2,自引:0,他引:2  
This paper gives a general formulation of a non-Gaussian conditional linear AR(1) model subsuming most of the non-Gaussian AR(1) models that have appeared in the literature. It derives some general results giving properties for the stationary process mean, variance and correlation structure, and conditions for stationarity. These results highlight similarities with and differences from the Gaussian AR(1) model, and unify many separate results appearing in the literature. Examples illustrate the wide range of properties that can appear under the conditional linear autoregressive assumption. These results are used in analysing three real datasets, illustrating general methods of estimation, model diagnostics and model selection. In particular, the theoretical results can be used to develop diagnostics for deciding if a time series can be modelled by some linear autoregressive model, and for selecting among several candidate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号