首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new algorithm for computing the exact null distribution of the Spearman rank correlation statistic ρ, which also works in the case of ties. The algorithm is based on symmetries in the representation of the probability generating function as a permanent with monomial entries. We present new critical values for sample sizes 19⩽n⩽22. Finally, we show how to derive the exact null distribution of Page's L statistic from the null distribution of ρ.  相似文献   

2.
We present new algorithms for computing the exact distributions and p-values of quadratic t-sample distribution-free statistics of Kruskal–Wallis type. These algorithms are presented in terms of generating functions. We show that our algorithm also works for cases with ties and that it is much faster than existing algorithms. Moreover, we show how to use the results for the Kruskal–Wallis type statistics to compute the exact null distribution of the Chacko–Shorack statistic.  相似文献   

3.
We introduce a new goodness-of-fit test which can be applied to hypothesis testing about the marginal distribution of dependent data. We derive a new test for the equivalent hypothesis in the space of wavelet coefficients. Such properties of the wavelet transform as orthogonality, localisation and sparsity make the hypothesis testing in wavelet domain easier than in the domain of distribution functions. We propose to test the null hypothesis separately at each wavelet decomposition level to overcome the problem of bi-dimensionality of wavelet indices and to be able to find the frequency where the empirical distribution function differs from the null in case the null hypothesis is rejected. We suggest a test statistic and state its asymptotic distribution under the null and under some of the alternative hypotheses.  相似文献   

4.
Moment generating functions and more generally, integral transforms for goodness-of-fit tests have been in use in the last several decades. Given a set of observations, the empirical transforms are easy to compute, being simply a sample mean, and due to uniqueness properties, these functions can be used for goodness-of-fit tests. This paper focuses on time series observations from a stationary process for which the moment generating function exists and the correlations have long-memory. For long-memory processes, the infinite sum of the correlations diverges and the realizations tend to have spurious trend like patterns where there may be none. Our aim is to use the empirical moment generating function to test the null hypothesis that the marginal distribution is Gaussian. We provide a simple proof of a central limit theorem using ideas from Gaussian subordination models (Taqqu, 1975) and derive critical regions for a graphical test of normality, namely the T3-plot ( Ghosh, 1996). Some simulated and real data examples are used for illustration.  相似文献   

5.
For the first time, we propose a new distribution so-called the beta generalized Rayleigh distribution that contains as special sub-models some well-known distributions. Expansions for the cumulative distribution and density functions are derived. We obtain explicit expressions for the moments, moment generating function, mean deviations, Bonferroni and Lorenz curves and densities of the order statistics and their moments. We estimate the parameters by maximum likelihood and provide the observed information matrix. The usefulness of the new distribution is illustrated through two real data sets that show that it is quite flexible in analyzing positive data instead of the generalized Rayleigh and Rayleigh distributions.  相似文献   

6.
In this article, we consider the class of censored exponential regression models which is very useful for modeling lifetime data. Under a sequence of Pitman alternatives, the asymptotic expansions up to order n? 1/2 of the non null distribution functions of the likelihood ratio, Wald, Rao score, and gradient statistics are derive in this class of models. The non null asymptotic distribution functions of these statistics are obtained for testing a composite null hypothesis in the presence of nuisance parameters. The power of all four tests, which are equivalent to first order, are compared based on these non null asymptotic expansions. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, we consider Monte Carlo simulations. We also present an empirical application for illustrative purposes.  相似文献   

7.
ABSTRACT

A new discrete distribution that depends on two parameters is introduced in this article. From this new distribution the geometric distribution is obtained as a special case. After analyzing some of its properties such as moments and unimodality, recurrences for the probability mass function and differential equations for its probability generating function are derived. In addition to this, parameters are estimated by maximum likelihood estimation numerically maximizing the log-likelihood function. Expected frequencies are calculated for different sets of data to prove the versatility of this discrete model.  相似文献   

8.
We present new techniques for computing exact distributions of ‘Friedman-type’ statistics. Representing the null distribution by a generating function allows for the use of general, not necessarily integer-valued rank scores. Moreover, we use symmetry properties of the multivariate generating function to accelerate computations. The methods also work for cases with ties and for permutation statistics. We discuss some applications: the classical Friedman rank test, the normal scores test, the Friedman permutation test, the Cochran–Cox test and the Kepner–Robinson test. Finally, we shortly discuss self-made software for computing exact p-values.  相似文献   

9.
We introduce and study the so-called Kumaraswamy generalized gamma distribution that is capable of modeling bathtub-shaped hazard rate functions. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a large number of well-known lifetime special sub-models such as the exponentiated generalized gamma, exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma, generalized Rayleigh, among others. Some structural properties of the new distribution are studied. We obtain two infinite sum representations for the moments and an expansion for the generating function. We calculate the density function of the order statistics and an expansion for their moments. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The usefulness of the new distribution is illustrated in two real data sets.  相似文献   

10.
We propose methods for detecting structural changes in time series with discrete‐valued observations. The detector statistics come in familiar L2‐type formulations incorporating the empirical probability generating function. Special emphasis is given to the popular models of integer autoregression and Poisson autoregression. For both models, we study mainly structural changes due to a change in distribution, but we also comment for the classical problem of parameter change. The asymptotic properties of the proposed test statistics are studied under the null hypothesis as well as under alternatives. A Monte Carlo power study on bootstrap versions of the new methods is also included along with a real data example.  相似文献   

11.
Summary A two-step method is proposed for evaluating the bootstrap null distribution function of some useful test statistics appropriate for two-sample and multi-sample comparisons. In the first step, the characteristic function of the bootstrap null distribution function is determined by recursive equations; in the second a numerical inversion by the Fast Fourier Transform is performed to evaluate this null distribution function. A simulation experiment is performed to show how computer timings increase with the pooled sample size.  相似文献   

12.
We study a new family of distributions defined by the minimum of the Poisson random number of independent identically distributed random variables having a general exponentiated G distribution. Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics and their moments, reliability, and Shannon entropy are derived. Maximum likelihood estimation of the model parameters is investigated. Two special models of the new family are discussed. We perform an application to a real data set to show the potentiality of the proposed family.  相似文献   

13.
We propose a multivariate extension of the univariate chi-squared normality test. Using a known result for the distribution of quadratic forms in normal variables, we show that the proposed test statistic has an approximated chi-squared distribution under the null hypothesis of multivariate normality. As in the univariate case, the new test statistic is based on a comparison of observed and expected frequencies for specified events in sample space. In the univariate case, these events are the standard class intervals, but in the multivariate extension we propose these become hyper-ellipsoidal annuli in multivariate sample space. We assess the performance of the new test using Monte Carlo simulation. Keeping the type I error rate fixed, we show that the new test has power that compares favourably with other standard normality tests, though no uniformly most powerful test has been found. We recommend the new test due to its competitive advantages.  相似文献   

14.

Sign test using median ranked set samples (MRSS) is introduced and investigated. We show that, this test is more powerful than the sign tests based on simple random sample (SRS) and ranked set sample (RSS) for finite sample size. It is found that, when the set size of MRSS is odd, the null distribution of the MRSS sign test is the same as the sign test obtained by using SRS. The exact null distributions and the power functions, in case of finite sample sizes, of these tests are derived. Also, the asymptotic distribution of the MRSS sign tests are derived. Numerical comparison of the MRSS sign test power with the power of the SRS sign test and the RSS sign test is given. Illustration of the procedure, using real data set of bilirubin level in Jaundice babies who stay in neonatal intensive care is introduced.  相似文献   

15.
This article develops a statistic for testing the null of a linear unit root process against the alternative of a stationary exponential smooth transition autoregressive model. The asymptotic distribution of the test is shown to be nonstandard but nuisance parameter-free and hence critical values are obtained by simulations. Simulations show that the proposed statistic has considerable power under various data generating scenarios. Applications to real exchange rates also illustrate the ability of our test to reject null of unit root when some of the alternative tests do not.  相似文献   

16.
A new five-parameter continuous distribution, the so-called McDonald Lomax distribution, that extends the Lomax distribution and some other distributions is proposed and studied. The model has as special sub-models new four- and three-parameter distributions. Various structural properties of the new distribution are derived, including expansions for the density function, explicit expressions for the moments, generating and quantile functions, mean deviations and Rényi entropy. The score function is derived and the estimation is performed by maximum likelihood. We also obtain the observed information matrix. An application illustrates the usefulness of the proposed model.  相似文献   

17.
We formulate and study a four-parameter lifetime model called the beta extended half-normal distribution. This model includes as sub-models the exponential, extended half-normal and half-normal distributions. We derive expansions for the new density function which do not depend on complicated functions. We obtain explicit expressions for the moments and incomplete moments, generating function, mean deviations, Bonferroni and Lorenz curves and Rényi entropy. In addition, the model parameters are estimated by maximum likelihood. We provide the observed information matrix. The new model is modified to cope with possible long-term survivors in the data. The usefulness of the new distribution is shown by means of two real data sets.  相似文献   

18.
The moments of the absorption are difficult to obtain. The generating functions are basic hypergeometric functions. This paper shows how to define two shift operators that allow elementary arguments to be used to develop recursions for the expected values of general functions. The exact moments of the distribution follow. The generating function for the negative binomial analogue gives the moments directly.  相似文献   

19.
The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology is well-known to provide powerful likelihood ratio tests. In the nonparametric context, the classical empirical likelihood (EL) ratio method is often applied in order to efficiently approximate properties of parametric likelihoods, using an approach based on substituting empirical distribution functions for their population counterparts. The optimal parametric likelihood ratio approach is however based on density functions. We develop and analyze the EL ratio approach based on densities in order to test the IG model fit. We show that the proposed test is an improvement over the entropy-based goodness-of-fit test for IG presented by Mudholkar and Tian (2002). Theoretical support is obtained by proving consistency of the new test and an asymptotic proposition regarding the null distribution of the proposed test statistic. Monte Carlo simulations confirm the powerful properties of the proposed method. Real data examples demonstrate the applicability of the density-based EL ratio goodness-of-fit test for an IG assumption in practice.  相似文献   

20.
In this paper, we propose a new three-parameter model called the exponential–Weibull distribution, which includes as special models some widely known lifetime distributions. Some mathematical properties of the proposed distribution are investigated. We derive four explicit expressions for the generalized ordinary moments and a general formula for the incomplete moments based on infinite sums of Meijer's G functions. We also obtain explicit expressions for the generating function and mean deviations. We estimate the model parameters by maximum likelihood and determine the observed information matrix. Some simulations are run to assess the performance of the maximum likelihood estimators. The flexibility of the new distribution is illustrated by means of an application to real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号