首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
There are no exact fixed-level tests for testing the null hypothesis that the difference of two exponential means is less than or equal to a prespecified value θ0. For this testing problem, there are several approximate testing procedures available in the literature. Using an extended definition of p-values, Tsui and Weerahandi (1989) gave an exact significance test for this testing problem. In this paper, the performance of that procedure is investigated and is compared with approximate procedures. A size and power comparison is carried out using a simulation study. Its findings show that the test based on the generalized p-value guarantees the intended size and that it is either as good as or outperforms approximate procedures available in the literature, both in power and in size.  相似文献   

2.
This paper derives the exact confidence intervals for the exponential step-stress accelerated life-testing model as well as the approximate confidence intervals for the k-step exponential step-stress accelerated life-testing model under progressive Type-II censoring. A Monte Carlo simulation study is carried out to examine the performance of these confidence intervals. Finally, an example is given to illustrate the proposed procedures.  相似文献   

3.
This paper deals with the problem of simultaneously estimating multiple ratios. In the simplest case of only one ratio parameter, Fieller's theorem (J. Roy. Statist. Soc. Ser. B 16 (1954) 175) provides a confidence interval for the single ratio. For multiple ratios, there is no method available to construct simultaneous confidence intervals that exactly satisfy a given familywise confidence level. Many of the methods in use are conservative since they are based on probability inequalities. In this paper, first we consider exact simultaneous confidence sets based on the multivariate t-distribution. Two approaches of determining the exact simultaneous confidence sets are outlined. Second, approximate simultaneous confidence intervals based on the multivariate t-distribution with estimated correlation matrix and a resampling approach are discussed. The methods are applied to ratios of linear combinations of the means in the one-way layout and ratios of parameter combinations in the general linear model. Extensive Monte Carlo simulation is carried out to compare the performance of the various methods with respect to the stability of the estimated critical points and of the coverage probabilities.  相似文献   

4.
This article concerns inference on the correlation coefficients of a multivariate normal distribution. Inferential procedures based on the concepts of generalized variables (GVs) and generalized pp-values are proposed for elements of a correlation matrix. For the simple correlation coefficient, the merits of the generalized confidence limits and other approximate methods are evaluated using a numerical study. The study indicates that the proposed generalized confidence limits are uniformly most accurate even for samples as small as three. The results are extended for comparing two independent correlations, overlapping and non-overlapping dependent correlations. For each problem, the properties of the GV approach and other asymptotic methods are evaluated using Monte Carlo simulation. The GV approach produces satisfactory results for all the problems considered. The methods are illustrated using a few practical examples.  相似文献   

5.
Statistical inferences about the dispersion of multivariate population are determined by generalized variance. In this article, we consider constructing a confidence interval and testing the hypotheses about the ratio of two independent generalized variances, and the ratio of two dependent generalized variances in two multivariate normal populations. In the case of independence, we first propose a computational approach and then obtain an approximate approach. In the case of dependence, we give an approach using the concepts of generalized confidence interval and generalized p value. In each case, simulation studies are performed for comparing the methods and we find satisfactory results. Practical examples are given for each approach.  相似文献   

6.
In this article, we point out some interesting relations between the exact test and the score test for a binomial proportion p. Based on the properties of the tests, we propose some approximate as well as exact methods of computing sample sizes required for the tests to attain a specified power. Sample sizes required for the tests are tabulated for various values of p to attain a power of 0.80 at level 0.05. We also propose approximate and exact methods of computing sample sizes needed to construct confidence intervals with a given precision. Using the proposed exact methods, sample sizes required to construct 95% confidence intervals with various precisions are tabulated for p = .05(.05).5. The approximate methods for computing sample sizes for score confidence intervals are very satisfactory and the results coincide with those of the exact methods for many cases.  相似文献   

7.
Exact simultaneous confidence bands (SCBs) for a polynomial regression model are available only in some special situations. In this paper, simultaneous confidence levels for both hyperbolic and constant width bands for a polynomial function over a given interval are expressed as multidimensional integrals. The dimension of these integrals is equal to the degree of the polynomial. Hence the values can be calculated quickly and accurately via numerical quadrature provided that the degree of the polynomial is small (e.g. 2 or 3). This allows the construction of exact SCBs for quadratic and cubic regression functions over any given interval and for any given design matrix. Quadratic and cubic regressions are frequently used to characterise dose response relationships in addition to many other applications. Comparison between the hyperbolic and constant width bands under both the average width and minimum volume confidence set criteria shows that the constant width band can be much less efficient than the hyperbolic band. For hyperbolic bands, comparison between the exact critical constant and conservative or approximate critical constants indicates that the exact critical constant can be substantially smaller than the conservative or approximate critical constants. Numerical examples from a dose response study are used to illustrate the methods.  相似文献   

8.
In this article, we propose a simple method of constructing confidence intervals for a function of binomial success probabilities and for a function of Poisson means. The method involves finding an approximate fiducial quantity (FQ) for the parameters of interest. A FQ for a function of several parameters can be obtained by substitution. For the binomial case, the fiducial approach is illustrated for constructing confidence intervals for the relative risk and the ratio of odds. Fiducial inferential procedures are also provided for estimating functions of several Poisson parameters. In particular, fiducial inferential approach is illustrated for interval estimating the ratio of two Poisson means and for a weighted sum of several Poisson means. Simple approximations to the distributions of the FQs are also given for some problems. The merits of the procedures are evaluated by comparing them with those of existing asymptotic methods with respect to coverage probabilities, and in some cases, expected widths. Comparison studies indicate that the fiducial confidence intervals are very satisfactory, and they are comparable or better than some available asymptotic methods. The fiducial method is easy to use and is applicable to find confidence intervals for many commonly used summary indices. Some examples are used to illustrate and compare the results of fiducial approach with those of other available asymptotic methods.  相似文献   

9.
A. Wong 《Statistical Papers》1995,36(1):253-264
The problem of predicting a future observation based on an observed sample is discussed. As a device for eliminating the parameter from the conditional distribution of a future observation given the observed sample, we suggest averaging with respect to an exact or approximate confidence distribution function. It is shown that in many standard problems where an exact answer is available by other methods, the averaging method reproduces that exact answer. When the exact answer is not easily available, the averaging method gives a simple and systematic approach to the problems. Applications to life data from exponential distribution and regression problems are examined.  相似文献   

10.
In industrial life test and survival analysis, the percentile estimation is always a practical issue with lower confidence bound required for maintenance purpose. Sampling distributions for the maximum likelihood estimators of percentiles are usually unknown. Bootstrap procedures are common ways to estimate the unknown sampling distributions. Five parametric bootstrap procedures are proposed to estimate the confidence lower bounds on maximum likelihood estimators for the generalized exponential (GE) distribution percentiles under progressive type-I interval censoring. An intensive simulation is conducted to evaluate the performances of proposed procedures. Finally, an example of 112 patients with plasma cell myeloma is given for illustration.  相似文献   

11.
Many inference problems lead naturally to a marginal or conditional measure of departure that depends on a nuisance parameter. As a device for first-order elimination of the nuisance parameter, we suggest averaging with respect to an exact or approximate confidence distribution function. It is shown that for many standard problems where an exact answer is available by other methods, the averaging method reproduces the exact answer. Moreover, for the gamma-mean problem, where the exact answer is not explicitly available, the averaging method gives results that agree closely with those obtained from higher-order asymptotic methods. Examples are discussed; detailed asymptotic calculations will be examined elsewhere.  相似文献   

12.
In many practical situations, complete data are not available in lifetime studies. Many of the available observations are right censored giving survival information up to a noted time and not the exact failure times. This constitutes randomly censored data. In this paper, we consider Maxwell distribution as a survival time model. The censoring time is also assumed to follow a Maxwell distribution with a different parameter. Maximum likelihood estimators and confidence intervals for the parameters are derived with randomly censored data. Bayes estimators are also developed with inverted gamma priors and generalized entropy loss function. A Monte Carlo simulation study is performed to compare the developed estimation procedures. A real data example is given at the end of the study.  相似文献   

13.
In this paper, the estimation of parameters for a generalized inverted exponential distribution based on the progressively first-failure type-II right-censored sample is studied. An expectation–maximization (EM) algorithm is developed to obtain maximum likelihood estimates of unknown parameters as well as reliability and hazard functions. Using the missing value principle, the Fisher information matrix has been obtained for constructing asymptotic confidence intervals. An exact interval and an exact confidence region for the parameters are also constructed. Bayesian procedures based on Markov Chain Monte Carlo methods have been developed to approximate the posterior distribution of the parameters of interest and in addition to deduce the corresponding credible intervals. The performances of the maximum likelihood and Bayes estimators are compared in terms of their mean-squared errors through the simulation study. Furthermore, Bayes two-sample point and interval predictors are obtained when the future sample is ordinary order statistics. The squared error, linear-exponential and general entropy loss functions have been considered for obtaining the Bayes estimators and predictors. To illustrate the discussed procedures, a set of real data is analyzed.  相似文献   

14.
We consider the problem of testing the equality of several multivariate normal mean vectors under heteroscedasticity. We first construct a fiducial confidence region (FCR) for the differences between normal mean vectors and we then propose a fiducial test for comparing mean vectors by inverting the FCR. We also propose a simple approximate test that is based on a modification of the χ2 approximation. This simple test avoids the complications of simulation-based inference methods. We show that the proposed fiducial test has correct type one error rate asymptotically. We compare the proposed fiducial and approximate tests with the parametric bootstrap test in terms of controlling the type one error rate via an extensive simulation study. Our simulation results show that the proposed fiducial and approximate tests control the type one error rate, while there are cases that the parametric bootstrap test is out of control. We also discuss the power performance of the tests. Finally, we illustrate with a real example how our proposed methods are applicable in analyzing repeated measure designs including a single grouping variable.  相似文献   

15.
This paper considers problems of interval estimation and hypotheses testing for the generalized Lorenz curve under the Pareto distribution. Our approach is based on the concepts of generalized test variables and generalized pivotal quantities. The merits of the proposed procedures are numerically carried out and compared with asymptotic and bootstrap methods. Empirical evidence shows that the coverage accuracy of the proposed confidence intervals and the type I error control of the proposed exact tests are satisfactory. For illustration purposes, a real data set on median income of the 20 occupations in the United States Census of Population is analysed.  相似文献   

16.

This article provides an improvement of the network algorithm for calculating the exact p value of the generalized Fisher's exact test in two-way contingency tables. We give a new exact upper bound and an approximate upper bound for the maximization problems encountered in the network algorithm. The approximate bound has some very desirable computational properties and the meaning is elucidated from a viewpoint of differential geometry. Our proposed procedure performs well regardless of the pattern of marginal totals of data.  相似文献   

17.
Applied statisticians and pharmaceutical researchers are frequently involved in the design and analysis of clinical trials where at least one of the outcomes is binary. Treatments are judged by the probability of a positive binary response. A typical example is the noninferiority trial, where it is tested whether a new experimental treatment is practically not inferior to an active comparator with a prespecified margin δ. Except for the special case of δ = 0, no exact conditional test is available although approximate conditional methods (also called second‐order methods) can be applied. However, in some situations, the approximation can be poor and the logical argument for approximate conditioning is not compelling. The alternative is to consider an unconditional approach. Standard methods like the pooled z‐test are already unconditional although approximate. In this article, we review and illustrate unconditional methods with a heavy emphasis on modern methods that can deliver exact, or near exact, results. For noninferiority trials based on either rate difference or rate ratio, our recommendation is to use the so‐called E‐procedure, based on either the score or likelihood ratio statistic. This test is effectively exact, computationally efficient, and respects monotonicity constraints in practice. We support our assertions with a numerical study, and we illustrate the concepts developed in theory with a clinical example in pulmonary oncology; R code to conduct all these analyses is available from the authors.  相似文献   

18.
An important problem of continuing interest to engineers is the need to assess the circular error probable (CEP), a measure of the impact accuracy of a projectile or a measure of GPS point positioning accuracy. One of the challenges in addressing this problem is to construct some accurate confidence bounds or intervals for CEP in the small sample settings, where certain amount of systematic biases exist in testing experiments. Currently there is no general method available to deal with this challenge due to the intractability of the distributions of the existing CEP estimators. In this paper, in order to meet this challenge, several new approximate formulas are derived for calculating CEP, which are more accurate than the existing ones but still simple to use. Both exact and empirical expressions for the derivatives of CEP with respect to the population means and variances are also given. Using these formulas, three kinds of confidence bounds or intervals for CEP are proposed, which are based on the parametric bootstrap, the asymptotic distribution, and the Cornish–Fisher expansion, respectively. Moreover, a bias-corrected estimator of CEP is provided. The performances of these procedures are evaluated based on some Monte Carlo simulation studies. Both the theoretical and simulation results show that the Cornish–Fisher expansion-based procedure performs slightly better than the other two procedures when the downrange and cross-range variances are assumed the same. However, when these two variances are different, the simulation demonstrates that the bootstrap approach can be superior to the Cornish–Fisher for the small samples (say n=10), and vice versa for the moderate samples (say n=20).  相似文献   

19.
In this paper we present relatively simple (ruler, paper, and pencil) nonparametric procedures for constructing joint confidence regions for (i) the median and the inner quartile range for the symmetric one-sample problem and (ii) the shift and ratio of scale parameters for the two-sample case. Both procedures are functions of the sample quartiles and have exact confidence levels when the populations are continuous. The one-sample case requires symmetry of first and third quartiles about the median.

The confidence regions we propose are always convex, nested for decreasing confidence levels and are compact for reasonably large sample sizes. Both exact small sample and approximate large sample distributions are given.  相似文献   

20.
The Behrens–Fisher problem concerns the inferences for the difference between means of two independent normal populations without the assumption of equality of variances. In this article, we compare three approximate confidence intervals and a generalized confidence interval for the Behrens–Fisher problem. We also show how to obtain simultaneous confidence intervals for the three population case (analysis of variance, ANOVA) by the Bonferroni correction factor. We conduct an extensive simulation study to evaluate these methods in respect to their type I error rate, power, expected confidence interval width, and coverage probability. Finally, the considered methods are applied to two real dataset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号