首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.  In sample surveys of finite populations, subpopulations for which the sample size is too small for estimation of adequate precision are referred to as small domains. Demand for small domain estimates has been growing in recent years among users of survey data. We explore the possibility of enhancing the precision of domain estimators by combining comparable information collected in multiple surveys of the same population. For this, we propose a regression method of estimation that is essentially an extended calibration procedure whereby comparable domain estimates from the various surveys are calibrated to each other. We show through analytic results and an empirical study that this method may greatly improve the precision of domain estimators for the variables that are common to these surveys, as these estimators make effective use of increased sample size for the common survey items. The design-based direct estimators proposed involve only domain-specific data on the variables of interest. This is in contrast with small domain (mostly small area) indirect estimators, based on a single survey, which incorporate through modelling data that are external to the targeted small domains. The approach proposed is also highly effective in handling the closely related problem of estimation for rare population characteristics.  相似文献   

2.
The Fay–Herriot model is a standard model for direct survey estimators in which the true quantity of interest, the superpopulation mean, is latent and its estimation is improved through the use of auxiliary covariates. In the context of small area estimation, these estimates can be further improved by borrowing strength across spatial regions or by considering multiple outcomes simultaneously. We provide here two formulations to perform small area estimation with Fay–Herriot models that include both multivariate outcomes and latent spatial dependence. We consider two model formulations. In one of these formulations the outcome‐by‐space dependence structure is separable. The other accounts for the cross dependence through the use of a generalized multivariate conditional autoregressive (GMCAR) structure. The GMCAR model is shown, in a state‐level example, to produce smaller mean square prediction errors, relative to equivalent census variables, than the separable model and the state‐of‐the‐art multivariate model with unstructured dependence between outcomes and no spatial dependence. In addition, both the GMCAR and the separable models give smaller mean squared prediction error than the state‐of‐the‐art model when conducting small area estimation on county level data from the American Community Survey.  相似文献   

3.
M-quantile models with application to poverty mapping   总被引:1,自引:0,他引:1  
Over the last decade there has been growing demand for estimates of population characteristics at small area level. Unfortunately, cost constraints in the design of sample surveys lead to small sample sizes within these areas and as a result direct estimation, using only the survey data, is inappropriate since it yields estimates with unacceptable levels of precision. Small area models are designed to tackle the small sample size problem. The most popular class of models for small area estimation is random effects models that include random area effects to account for between area variations. However, such models also depend on strong distributional assumptions, require a formal specification of the random part of the model and do not easily allow for outlier robust inference. An alternative approach to small area estimation that is based on the use of M-quantile models was recently proposed by Chambers and Tzavidis (Biometrika 93(2):255–268, 2006) and Tzavidis and Chambers (Robust prediction of small area means and distributions. Working paper, 2007). Unlike traditional random effects models, M-quantile models do not depend on strong distributional assumption and automatically provide outlier robust inference. In this paper we illustrate for the first time how M-quantile models can be practically employed for deriving small area estimates of poverty and inequality. The methodology we propose improves the traditional poverty mapping methods in the following ways: (a) it enables the estimation of the distribution function of the study variable within the small area of interest both under an M-quantile and a random effects model, (b) it provides analytical, instead of empirical, estimation of the mean squared error of the M-quantile small area mean estimates and (c) it employs a robust to outliers estimation method. The methodology is applied to data from the 2002 Living Standards Measurement Survey (LSMS) in Albania for estimating (a) district level estimates of the incidence of poverty in Albania, (b) district level inequality measures and (c) the distribution function of household per-capita consumption expenditure in each district. Small area estimates of poverty and inequality show that the poorest Albanian districts are in the mountainous regions (north and north east) with the wealthiest districts, which are also linked with high levels of inequality, in the coastal (south west) and southern part of country. We discuss the practical advantages of our methodology and note the consistency of our results with results from previous studies. We further demonstrate the usefulness of the M-quantile estimation framework through design-based simulations based on two realistic survey data sets containing small area information and show that the M-quantile approach may be preferable when the aim is to estimate the small area distribution function.  相似文献   

4.
小域估计(Small Area Estimation)是抽样调查领域里一个重要的研究方向,国计民生中的许多重要问题如失业率、传染病的发病率和民意测验等抽样调查都需要采用不同的小域估计方法。本文针对小域估计问题,以估计方法发展脉络为主线,以分层贝叶斯分析的小域估计为重点,对小域估计问题的理论、方法和最新进展进行简述,并利用澳大利亚残疾、老龄化和护理者(SDAC 2003)抽样调查实际数据,从分层贝叶斯分析角度对澳大利亚残疾率进行估计,最后对估计结果进行比较和讨论。  相似文献   

5.
Abstract

Linear mixed effects models have been popular in small area estimation problems for modeling survey data when the sample size in one or more areas is too small for reliable inference. However, when the data are restricted to a bounded interval, the linear model may be inappropriate, particularly if the data are near the boundary. Nonlinear sampling models are becoming increasingly popular for small area estimation problems when the normal model is inadequate. This paper studies the use of a beta distribution as an alternative to the normal distribution as a sampling model for survey estimates of proportions which take values in (0, 1). Inference for small area proportions based on the posterior distribution of a beta regression model ensures that point estimates and credible intervals take values in (0, 1). Properties of a hierarchical Bayesian small area model with a beta sampling distribution and logistic link function are presented and compared to those of the linear mixed effect model. Propriety of the posterior distribution using certain noninformative priors is shown, and behavior of the posterior mean as a function of the sampling variance and the model variance is described. An example using 2010 Small Area Income and Poverty Estimates (SAIPE) data is given, and a numerical example studying small sample properties of the model is presented.  相似文献   

6.
The term ‘small area’ or ‘small domain’ is commonly used to denote a small geographical area that has a small subpopulation of people within a large area. Small area estimation is an important area in survey sampling because of the growing demand for better statistical inference for small areas in public or private surveys. In small area estimation problems the focus is on how to borrow strength across areas in order to develop a reliable estimator and which makes use of available auxiliary information. Some traditional methods for small area problems such as empirical best linear unbiased prediction borrow strength through linear models that provide links to related areas, which may not be appropriate for some survey data. In this article, we propose a stepwise Bayes approach which borrows strength through an objective posterior distribution. This approach results in a generalized constrained Dirichlet posterior estimator when auxiliary information is available for small areas. The objective posterior distribution is based only on the assumption of exchangeability across related areas and does not make any explicit model assumptions. The form of our posterior distribution allows us to assign a weight to each member of the sample. These weights can then be used in a straight forward fashion to make inferences about the small area means. Theoretically, the stepwise Bayes character of the posterior allows one to prove the admissibility of the point estimators suggesting that inferential procedures based on this approach will tend to have good frequentist properties. Numerically, we demonstrate in simulations that the proposed stepwise Bayes approach can have substantial strengths compared to traditional methods.  相似文献   

7.
Small area estimation techniques are becoming increasingly used in survey applications to provide estimates for local areas of interest. The objective of this article is to develop and apply Information Theoretic (IT)-based formulations to estimate small area business and trade statistics. More specifically, we propose a Generalized Maximum Entropy (GME) approach to the problem of small area estimation that exploits auxiliary information relating to other known variables on the population and adjusts for consistency and additivity. The GME formulations, combining information from the sample together with out-of-sample aggregates of the population of interest, can be particularly useful in the context of small area estimation, for both direct and model-based estimators, since they do not require strong distributional assumptions on the disturbances. The performance of the proposed IT formulations is illustrated through real and simulated datasets.  相似文献   

8.
Unit-level regression models are commonly used in small area estimation (SAE) to obtain an empirical best linear unbiased prediction of small area characteristics. The underlying assumptions of these models, however, may be unrealistic in some applications. Previous work developed a copula-based SAE model where the empirical Kendall's tau was used to estimate the dependence between two units from the same area. In this article, we propose a likelihood framework to estimate the intra-class dependence of the multivariate exchangeable copula for the empirical best unbiased prediction (EBUP) of small area means. One appeal of the proposed approach lies in its accommodation of both parametric and semi-parametric estimation approaches. Under each estimation method, we further propose a bootstrap approach to obtain a nearly unbiased estimator of the mean squared prediction error of the EBUP of small area means. The performance of the proposed methods is evaluated through simulation studies and also by a real data application.  相似文献   

9.
Sample surveys are usually designed and analyzed to produce estimates for larger areas and/or populations. Nevertheless, sample sizes are often not large enough to give adequate precision for small area estimates of interest. To circumvent such difficulties, borrowing strength from related small areas via modeling becomes essential. In line with this, we propose a hierarchical multivariate Bayes prediction method for small area estimation based on the seemingly unrelated regressions (SUR) model. The performance of the proposed method was evaluated through simulation studies.  相似文献   

10.
Sample surveys are usually designed and analysed to produce estimates for larger areas. Nevertheless, sample sizes are often not large enough to give adequate precision for small area estimates of interest. To overcome such difficulties, borrowing strength from related small areas via modelling becomes essential. In line with this, we propose components of variance models with power transformations for small area estimation. This paper reports the results of a study aimed at incorporating the power transformation in small area estimation for improving the quality of small area predictions. The proposed methods are demonstrated on satellite data in conjunction with survey data to estimate mean acreage under a specified crop for counties in Iowa.  相似文献   

11.
The authors use a hierarchical Bayes approach to area level unmatched sampling and Unking models for small area estimation. Empirically they compare inferences under unmatched models with those obtained under the customary matched sampling and linking models. They apply the proposed method to Canadian census undercoverage estimation, developing a full hierarchical Bayes approach using Markov Chain Monte Carlo sampling methods. They show that the method can provide efficient model‐based estimates. They use posterior predictive distributions to assess model fit.  相似文献   

12.
Hypertension is a highly prevalent cardiovascular disease. It marks a considerable cost factor to many national health systems. Despite its prevalence, regional disease distributions are often unknown and must be estimated from survey data. However, health surveys frequently lack in regional observations due to limited resources. Obtained prevalence estimates suffer from unacceptably large sampling variances and are not reliable. Small area estimation solves this problem by linking auxiliary data from multiple regions in suitable regression models. Typically, either unit- or area-level observations are considered for this purpose. But with respect to hypertension, both levels should be used. Hypertension has characteristic comorbidities and is strongly related to lifestyle features, which are unit-level information. It is also correlated with socioeconomic indicators that are usually measured on the area-level. But the level combination is challenging as it requires multi-level model parameter estimation from small samples. We use a multi-level small area model with level-specific penalization to overcome this issue. Model parameter estimation is performed via stochastic coordinate gradient descent. A jackknife estimator of the mean squared error is presented. The methodology is applied to combine health survey data and administrative records to estimate regional hypertension prevalence in Germany.  相似文献   

13.
The data that are used in constructing empirical Bayes estimates can properly be regarded as arising in a two-stage sampling scheme. In this setting it is possible to modify the conventional parameter estimates so that a reduction in expected squared error is effected. In the empirical Bayes approach this is done through the use of Bayes's theorem. The alternative approach proposed in this paper specifies a class of modified estimates and then seeks to identify that member of the class which yields the minimum squared error. One advantage of this approach relative to the empirical Bayes approach is that certain problems involving multiple parameters are easily overcome. Further, it permits the use of relatively efficient methods of non-parametric estimation, such as those based on quantiles or ranks; this has not been achieved by empirical Bayes methods.  相似文献   

14.
The empirical best linear unbiased prediction approach is a popular method for the estimation of small area parameters. However, the estimation of reliable mean squared prediction error (MSPE) of the estimated best linear unbiased predictors (EBLUP) is a complicated process. In this paper we study the use of resampling methods for MSPE estimation of the EBLUP. A cross-sectional and time-series stationary small area model is used to provide estimates in small areas. Under this model, a parametric bootstrap procedure and a weighted jackknife method are introduced. A Monte Carlo simulation study is conducted in order to compare the performance of different resampling-based measures of uncertainty of the EBLUP with the analytical approximation. Our empirical results show that the proposed resampling-based approaches performed better than the analytical approximation in several situations, although in some cases they tend to underestimate the true MSPE of the EBLUP in a higher number of small areas.  相似文献   

15.
In this paper, a penalized weighted least squares approach is proposed for small area estimation under the unit level model. The new method not only unifies the traditional empirical best linear unbiased prediction that does not take sampling design into account and the pseudo‐empirical best linear unbiased prediction that incorporates sampling weights but also has the desirable robustness property to model misspecification compared with existing methods. The empirical small area estimator is given, and the corresponding second‐order approximation to mean squared error estimator is derived. Numerical comparisons based on synthetic and real data sets show superior performance of the proposed method to currently available estimators in the literature.  相似文献   

16.
Abstract

The present study confirms the influential role of a positively and a negatively correlated auxiliary variables in enhancing the precision of estimates of current population mean in two occasion rotation (successive) sampling. Exponential-type estimators of current population mean have been proposed for three different situations: (i) the information on a positively correlated auxiliary variable is readily available on both occasions (ii) the information on a negatively correlated auxiliary variable is readily available on both occasions and (iii) the information on both positively and negatively correlated auxiliary variables are readily available on both the occasions. The characteristics of the proposed estimators have been explored and their efficacious performances are compared with the natural and recent contemporary estimators. Optimum replacement strategies of the proposed estimation procedures have been formulated. Simulation and empirical studies are carried out to justify the proposition of the proposed estimators and appropriate recommendations have been put forward to the survey practitioners.  相似文献   

17.
The authors develop a small area estimation method using a nested error linear regression model and survey weights. In particular, they propose a pseudo‐empirical best linear unbiased prediction (pseudo‐EBLUP) estimator to estimate small area means. This estimator borrows strength across areas through the model and makes use of the survey weights to preserve the design consistency as the area sample size increases. The proposed estimator also has a nice self‐benchmarking property. The authors also obtain an approximation to the model mean squared error (MSE) of the proposed estimator and a nearly unbiased estimator of MSE. Finally, they compare the proposed estimator with the EBLUP estimator and the pseudo‐EBLUP estimator proposed by Prasad & Rao (1999), using data analyzed earlier by Battese, Harter & Fuller (1988).  相似文献   

18.
Generalised variance function (GVF) models are data analysis techniques often used in large‐scale sample surveys to approximate the design variance of point estimators for population means and proportions. Some potential advantages of the GVF approach include operational simplicity, more stable sampling errors estimates and providing a convenient method of summarising results when a high number of survey variables is considered. In this paper, several parametric and nonparametric methods for GVF estimation with binary variables are proposed and compared. The behavior of these estimators is analysed under heteroscedasticity and in the presence of outliers and influential observations. An empirical study based on the annual survey of living conditions in Galicia (a region in the northwest of Spain) illustrates the behaviour of the proposed estimators.  相似文献   

19.
ABSTRACT

The present investigation deals with the problem of estimation of population mean in two-phase sampling. In the presence of two auxiliary variables, some classes of estimators have been proposed through predictive approach. Properties of the proposed classes of estimators have been studied, and the unbiased versions of these estimators along with their approximate variance expressions are obtained under simple random sampling without replacement scheme. The respective optimum strategies of the proposed estimators are discussed, and their empirical and graphical comparisons with some contemporary estimators of population mean have been made. Suitable recommendations to the survey practitioner are given.  相似文献   

20.
In practical survey sampling, missing data are unavoidable due to nonresponse, rejected observations by editing, disclosure control, or outlier suppression. We propose a calibrated imputation approach so that valid point and variance estimates of the population (or domain) totals can be computed by the secondary users using simple complete‐sample formulae. This is especially helpful for variance estimation, which generally require additional information and tools that are unavailable to the secondary users. Our approach is natural for continuous variables, where the estimation may be either based on reweighting or imputation, including possibly their outlier‐robust extensions. We also propose a multivariate procedure to accommodate the estimation of the covariance matrix between estimated population totals, which facilitates variance estimation of the ratios or differences among the estimated totals. We illustrate the proposed approach using simulation data in supplementary materials that are available online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号