首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Wu and Zen (1999), a linear model selection procedure based on M-estimation is proposed, which includes many classical model selection criteria as its special cases, and it is shown that the selection procedure is strongly consistent for a variety of penalty functions. In this paper, we will investigate its small sample performances for some choices of fixed penalty functions. It can be seen that the performance varies with the choice of the penalty. Hence, a randomized penalty based on observed data is proposed, which preserves the consistency property and provides improved performance over a fixed choice of penalty functions.  相似文献   

2.
In this paper, we focus on the feature extraction and variable selection of massive data which is divided and stored in different linked computers. Specifically, we study the distributed model selection with the Smoothly Clipped Absolute Deviation (SCAD) penalty. Based on the Alternating Direction Method of Multipliers (ADMM) algorithm, we propose distributed SCAD algorithm and prove its convergence. The results of variable selection of the distributed approach are same with the results of the non-distributed approach. Numerical studies show that our method is both effective and efficient which performs well in distributed data analysis.  相似文献   

3.
In the paper we consider minimisation of U-statistics with the weighted Lasso penalty and investigate their asymptotic properties in model selection and estimation. We prove that the use of appropriate weights in the penalty leads to the procedure that behaves like the oracle that knows the true model in advance, i.e. it is model selection consistent and estimates nonzero parameters with the standard rate. For the unweighted Lasso penalty, we obtain sufficient and necessary conditions for model selection consistency of estimators. The obtained results strongly based on the convexity of the loss function that is the main assumption of the paper. Our theorems can be applied to the ranking problem as well as generalised regression models. Thus, using U-statistics we can study more complex models (better describing real problems) than usually investigated linear or generalised linear models.  相似文献   

4.
5.
Kaifeng Zhao 《Statistics》2016,50(6):1276-1289
This paper considers variable selection in additive quantile regression based on group smoothly clipped absolute deviation (gSCAD) penalty. Although shrinkage variable selection in additive models with least-squares loss has been well studied, quantile regression is sufficiently different from mean regression to deserve a separate treatment. It is shown that the gSCAD estimator can correctly identify the significant components and at the same time maintain the usual convergence rates in estimation. Simulation studies are used to illustrate our method.  相似文献   

6.
In this paper, we discuss the selection of random effects within the framework of generalized linear mixed models (GLMMs). Based on a reparametrization of the covariance matrix of random effects in terms of modified Cholesky decomposition, we propose to add a shrinkage penalty term to the penalized quasi-likelihood (PQL) function of the variance components for selecting effective random effects. The shrinkage penalty term is taken as a function of the variance of random effects, initiated by the fact that if the variance is zero then the corresponding variable is no longer random (with probability one). The proposed method takes the advantage of a convenient computation for the PQL estimation and appealing properties for certain shrinkage penalty functions such as LASSO and SCAD. We propose to use a backfitting algorithm to estimate the fixed effects and variance components in GLMMs, which also selects effective random effects simultaneously. Simulation studies show that the proposed approach performs quite well in selecting effective random effects in GLMMs. Real data analysis is made using the proposed approach, too.  相似文献   

7.
8.
A new regularization method for regression models is proposed. The criterion to be minimized contains a penalty term which explicitly links strength of penalization to the correlation between predictors. Like the elastic net, the method encourages a grouping effect where strongly correlated predictors tend to be in or out of the model together. A boosted version of the penalized estimator, which is based on a new boosting method, allows to select variables. Real world data and simulations show that the method compares well to competing regularization techniques. In settings where the number of predictors is smaller than the number of observations it frequently performs better than competitors, in high dimensional settings prediction measures favor the elastic net while accuracy of estimation and stability of variable selection favors the newly proposed method.  相似文献   

9.
10.
We address the issue of model selection in beta regressions with varying dispersion. The model consists of two submodels, namely: for the mean and for the dispersion. Our focus is on the selection of the covariates for each submodel. Our Monte Carlo evidence reveals that the joint selection of covariates for the two submodels is not accurate in finite samples. We introduce two new model selection criteria that explicitly account for varying dispersion and propose a fast two step model selection scheme which is considerably more accurate and is computationally less costly than usual joint model selection. Monte Carlo evidence is presented and discussed. We also present the results of an empirical application.  相似文献   

11.
This study considers the binary classification of functional data collected in the form of curves. In particular, we assume a situation in which the curves are highly mixed over the entire domain, so that the global discriminant analysis based on the entire domain is not effective. This study proposes an interval-based classification method for functional data: the informative intervals for classification are selected and used for separating the curves into two classes. The proposed method, called functional logistic regression with fused lasso penalty, combines the functional logistic regression as a classifier and the fused lasso for selecting discriminant segments. The proposed method automatically selects the most informative segments of functional data for classification by employing the fused lasso penalty and simultaneously classifies the data based on the selected segments using the functional logistic regression. The effectiveness of the proposed method is demonstrated with simulated and real data examples.  相似文献   

12.
A researcher is often confronted with the difficult and subjective task of determining which of m models best fits a set of observed data. A general robust statistical procedure for model selection is examined which uses discriminant analysis on significance levels resulting from various tests of hypotheses concerning the models. The use of Monte Carlo simulation to obtain the significance levels associated with the tests is presented. The technique is illustrated by application to four band recovery models useful in wildlife studies. Error rates due to misclassification are also reported.  相似文献   

13.
14.
Abstract

Variable selection is a fundamental challenge in statistical learning if one works with data sets containing huge amount of predictors. In this artical we consider procedures popular in model selection: Lasso and adaptive Lasso. Our goal is to investigate properties of estimators based on minimization of Lasso-type penalized empirical risk with a convex loss function, in particular nondifferentiable. We obtain theorems concerning rate of convergence in estimation, consistency in model selection and oracle properties for Lasso estimators if the number of predictors is fixed, i.e. it does not depend on the sample size. Moreover, we study properties of Lasso and adaptive Lasso estimators on simulated and real data sets.  相似文献   

15.
In this paper, a generalized partially linear model (GPLM) with missing covariates is studied and a Monte Carlo EM (MCEM) algorithm with penalized-spline (P-spline) technique is developed to estimate the regression coefficients and nonparametric function, respectively. As classical model selection procedures such as Akaike's information criterion become invalid for our considered models with incomplete data, some new model selection criterions for GPLMs with missing covariates are proposed under two different missingness mechanism, say, missing at random (MAR) and missing not at random (MNAR). The most attractive point of our method is that it is rather general and can be extended to various situations with missing observations based on EM algorithm, especially when no missing data involved, our new model selection criterions are reduced to classical AIC. Therefore, we can not only compare models with missing observations under MAR/MNAR settings, but also can compare missing data models with complete-data models simultaneously. Theoretical properties of the proposed estimator, including consistency of the model selection criterions are investigated. A simulation study and a real example are used to illustrate the proposed methodology.  相似文献   

16.
17.
Model selection in quantile regression models   总被引:1,自引:0,他引:1  
Lasso methods are regularisation and shrinkage methods widely used for subset selection and estimation in regression problems. From a Bayesian perspective, the Lasso-type estimate can be viewed as a Bayesian posterior mode when specifying independent Laplace prior distributions for the coefficients of independent variables [32 T. Park, G. Casella, The Bayesian Lasso, J. Amer. Statist. Assoc. 103 (2008), pp. 681686. doi: 10.1198/016214508000000337[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]]. A scale mixture of normal priors can also provide an adaptive regularisation method and represents an alternative model to the Bayesian Lasso-type model. In this paper, we assign a normal prior with mean zero and unknown variance for each quantile coefficient of independent variable. Then, a simple Markov Chain Monte Carlo-based computation technique is developed for quantile regression (QReg) models, including continuous, binary and left-censored outcomes. Based on the proposed prior, we propose a criterion for model selection in QReg models. The proposed criterion can be applied to classical least-squares, classical QReg, classical Tobit QReg and many others. For example, the proposed criterion can be applied to rq(), lm() and crq() which is available in an R package called Brq. Through simulation studies and analysis of a prostate cancer data set, we assess the performance of the proposed methods. The simulation studies and the prostate cancer data set analysis confirm that our methods perform well, compared with other approaches.  相似文献   

18.
Many models have been used to represent the distributions of random variables in statistics, engineering, business, and the physical and social science. This paper considers two, four-parameter generalized bea distributions that include nearly all the models actually used as special or limiting cases. Properties and the interrelationships among these distributions are considered. Expressions are reported that facilitate parameter estimation and the analysis of associated means, variances, hazard functions and other distributional characteristics.

Estimation procedures corresponding to different data types are considered. Maximum likelihood estimation is used and the value of the likelihood function provides and important criterion for model selection. The relative performance of the various models is compared for several data sets.  相似文献   

19.
A Bayesian approach is presented for model selection in nonparametric regression with Gaussian errors and in binary nonparametric regression. A smoothness prior is assumed for each component of the model and the posterior probabilities of the candidate models are approximated using the Bayesian information criterion. We study the model selection method by simulation and show that it has excellent frequentist properties and gives improved estimates of the regression surface. All the computations are carried out efficiently using the Gibbs sampler.  相似文献   

20.
ABSTRACT

Inflated data are prevalent in many situations and a variety of inflated models with extensions have been derived to fit data with excessive counts of some particular responses. The family of information criteria (IC) has been used to compare the fit of models for selection purposes. Yet despite the common use in statistical applications, there are not too many studies evaluating the performance of IC in inflated models. In this study, we studied the performance of IC for data with dual-inflated data. The new zero- and K-inflated Poisson (ZKIP) regression model and conventional inflated models including Poisson regression and zero-inflated Poisson (ZIP) regression were fitted for dual-inflated data and the performance of IC were compared. The effect of sample sizes and the proportions of inflated observations towards selection performance were also examined. The results suggest that the Bayesian information criterion (BIC) and consistent Akaike information criterion (CAIC) are more accurate than the Akaike information criterion (AIC) in terms of model selection when the true model is simple (i.e. Poisson regression (POI)). For more complex models, such as ZIP and ZKIP, the AIC was consistently better than the BIC and CAIC, although it did not reach high levels of accuracy when sample size and the proportion of zero observations were small. The AIC tended to over-fit the data for the POI, whereas the BIC and CAIC tended to under-parameterize the data for ZIP and ZKIP. Therefore, it is desirable to study other model selection criteria for dual-inflated data with small sample size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号