首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
In this article, we introduce the nonparametric kernel method starting with half-normal detection function using line transect sampling. The new method improves bias from O(h 2), as the smoothing parameter h → 0, to O(h 3) and in some cases to O(h 4). Properties of the proposed estimator are derived and an expression for the asymptotic mean square error (AMSE) of the estimator is given. Minimization of the AMSE leads to an explicit formula for an optimal choice of the smoothing parameter. Small-sample properties of the estimator are investigated and compared with the traditional kernel estimator by using simulation technique. A numerical results show that improvements over the traditional kernel estimator often can be realized even when the true detection function is far from the half-normal detection function.  相似文献   

2.
This paper introduces an appealing semiparametric model for estimating wildlife abundance based on line transect data. The proposed method requires the existence of a parametric model and then improves the estimator using a kernel method. Properties of the resultant estimator are derived and an expression for the asymptotic mean square error (AMSE) of the estimator is given. Minimization of the AMSE leads to an explicit formula for an optimal choice of the smoothing parameter. Small-sample properties of the proposed estimator using the parametric half-normal model are investigated and compared with the classical kernel estimator using both simulations and real data. Numerical results show that improvements over the classical kernel estimator often can be realized even when the true density is far from the half-normal model.  相似文献   

3.
Logistic discrimination is a well documented method for classifying observations to two or more groups. However, estimation of the discriminant rule can be seriously affected by outliers. To overcome this, Cox and Ferry produced a robust logistic discrimination technique. Although their method worked in practice, parameter estimation was sometimes prone to convergence problems. This paper proposes a simplified robust logistic model which does not have any such problems and which takes a generalized linear model form. Misclassification rates calculated in a simulation exercise are used to compare the new method with ordinary logistic discrimination. Model diagnostics are also presented. The newly proposed model is then used on data collected from pregnant women at two district general hospitals. A robust logistic discriminant is calculated which can be used to predict accurately which method of feeding a woman will eventually use: breast feeding or bottle feeding.  相似文献   

4.
On Smoothing Sparse Multinomial Data   总被引:3,自引:0,他引:3  
Asymptotic theory is developed for the problem of smoothing sparse multinomial data, with emphasis on the criterion of mean summed square error of estimators of the probability mass function. If the data are not too sparse, in a well-defined sense, then the optimal rate of convergence is that achieved by the unsmoothed cell proportions. Otherwise, this rate can be improved upon by smoothing. Explicit results, including formulae for the optimal smoothing parameter, are presented for a kernel-type estimator. Also for this case, a cross-validatory choice procedure is shown to be asymptotically optimal.  相似文献   

5.
A spline-backfitted kernel smoothing method is proposed for partially linear additive model. Under assumptions of stationarity and geometric mixing, the proposed function and parameter estimators are oracally efficient and fast to compute. Such superior properties are achieved by applying to the data spline smoothing and kernel smoothing consecutively. Simulation experiments with both moderate and large number of variables confirm the asymptotic results. Application to the Boston housing data serves as a practical illustration of the method.  相似文献   

6.
The purpose of this paper is to examine the multiple group (>2) discrimination problem in which the group sizes are unequal and the variables used in the classification are correlated with skewed distributions. Using statistical simulation based on data from a clinical study, we compare the performances, in terms of misclassification rates, of nine statistical discrimination methods. These methods are linear and quadratic discriminant analysis applied to untransformed data, rank transformed data, and inverse normal scores data, as well as fixed kernel discriminant analysis, variable kernel discriminant analysis, and variable kernel discriminant analysis applied to inverse normal scores data. It is found that the parametric methods with transformed data generally outperform the other methods, and the parametric methods applied to inverse normal scores usually outperform the parametric methods applied to rank transformed data. Although the kernel methods often have very biased estimates, the variable kernel method applied to inverse normal scores data provides considerable improvement in terms of total nonerror rate.  相似文献   

7.
Discrete associated kernels method and extensions   总被引:1,自引:0,他引:1  
Discrete kernel estimation of a probability mass function (p.m.f.), often mentioned in the literature, has been far less investigated in comparison with continuous kernel estimation of a probability density function (p.d.f.). In this paper, we are concerned with a general methodology of discrete kernels for smoothing a p.m.f. f. We give a basic of mathematical tools for further investigations. First, we point out a generalizable notion of discrete associated kernel which is defined at each point of the support of f and built from any parametric discrete probability distribution. Then, some properties of the corresponding estimators are shown, in particular pointwise and global (asymptotical) properties. Other discrete kernels are constructed from usual discrete probability distributions such as Poisson, binomial and negative binomial. For small samples sizes, underdispersed discrete kernel estimators are more interesting than the empirical estimator; thus, an importance of discrete kernels is illustrated. The choice of smoothing bandwidth is classically investigated according to cross-validation and, novelly, to excess of zeros methods. Finally, a unification way of this method concerning the general probability function is discussed.  相似文献   

8.
An important problem for fitting local linear regression is the choice of the smoothing parameter. As the smoothing parameter becomes large, the estimator tends to a straight line, which is the least squares fit in the ordinary linear regression setting. This property may be used to assess the adequacy of a simple linear model. Motivated by Silverman's (1981) work in kernel density estimation, a suitable test statistic is the critical smoothing parameter where the estimate changes from nonlinear to linear, while linearity or non- linearity requires a more precise judgment. We define the critical smoothing parameter through the approximate F-tests by Hastie and Tibshirani (1990). To assess the significance, the “wild bootstrap” procedure is used to replicate the data and the proportion of bootstrap samples which give a nonlinear estimate when using the critical bandwidth is obtained as the p-value. Simulation results show that the critical smoothing test is useful in detecting a wide range of alternatives.  相似文献   

9.
Some studies of the bootstrap have assessed the effect of smoothing the estimated distribution that is resampled, a process usually known as the smoothed bootstrap. Generally, the smoothed distribution for resampling is a kernel estimate and is often rescaled to retain certain characteristics of the empirical distribution. Typically the effect of such smoothing has been measured in terms of the mean-squared error of bootstrap point estimates. The reports of these previous investigations have not been encouraging about the efficacy of smoothing. In this paper the effect of resampling a kernel-smoothed distribution is evaluated through expansions for the coverage of bootstrap percentile confidence intervals. It is shown that, under the smooth function model, proper bandwidth selection can accomplish a first-order correction for the one-sided percentile method. With the objective of reducing the coverage error the appropriate bandwidth for one-sided intervals converges at a rate of n −1/4, rather than the familiar n −1/5 for kernel density estimation. Applications of this same approach to bootstrap t and two-sided intervals yield optimal bandwidths of order n −1/2. These bandwidths depend on moments of the smooth function model and not on derivatives of the underlying density of the data. The relationship of this smoothing method to both the accelerated bias correction and the bootstrap t methods provides some insight into the connections between three quite distinct approximate confidence intervals.  相似文献   

10.
A smoothing procedure for discrete time failure data is proposed which allows for the inclusion of covariates. This purely nonparametric method is based on discrete or continuous kernel smoothing techniques that gives a compromise between the data and smoothness. The method may be used as an exploratory tool to uncover the underlying structure or as an alternative to parametric methods when prediction is the primary objective. Confidence intervals are considered and alternative techniques of cross validation based choices of smoothing parameters are investigated.  相似文献   

11.
This work deals with semiparametric kernel estimator of probability mass functions which are assumed to be modified Poisson distributions. This semiparametric approach is based on discrete associated kernel method appropriated for modelling count data; in particular, the famous discrete symmetric triangular kernels are used. Two data-driven bandwidth selection procedures are investigated and an explicit expression of optimal bandwidth not available until now is provided. Moreover, some asymptotic properties of the cross-validation criterion adapted for discrete semiparametric kernel estimation are studied. Finally, to measure the performance of semiparametric estimator according to each type of bandwidth parameter, some applications are realized on three real count data-sets from sociology and biology.  相似文献   

12.
13.
Kernel discriminant analysis translates the original classification problem into feature space and solves the problem with dimension and sample size interchanged. In high‐dimension low sample size (HDLSS) settings, this reduces the ‘dimension’ to that of the sample size. For HDLSS two‐class problems we modify Mika's kernel Fisher discriminant function which – in general – remains ill‐posed even in a kernel setting; see Mika et al. (1999). We propose a kernel naive Bayes discriminant function and its smoothed version, using first‐ and second‐degree polynomial kernels. For fixed sample size and increasing dimension, we present asymptotic expressions for the kernel discriminant functions, discriminant directions and for the error probability of our kernel discriminant functions. The theoretical calculations are complemented by simulations which show the convergence of the estimators to the population quantities as the dimension grows. We illustrate the performance of the new discriminant rules, which are easy to implement, on real HDLSS data. For such data, our results clearly demonstrate the superior performance of the new discriminant rules, and especially their smoothed versions, over Mika's kernel Fisher version, and typically also over the commonly used naive Bayes discriminant rule.  相似文献   

14.
This article is concerned with one discrete nonparametric kernel and two parametric regression approaches for providing the evolution law of pavement deterioration. The first parametric approach is a survival data analysis method; and the second is a nonlinear mixed-effects model. The nonparametric approach consists of a regression estimator using the discrete associated kernels. Some asymptotic properties of the discrete nonparametric kernel estimator are shown as, in particular, its almost sure consistency. Moreover, two data-driven bandwidth selection methods are also given, with a new theoretical explicit expression of optimal bandwidth provided for this nonparametric estimator. A comparative simulation study is realized with an application of bootstrap methods to a measure of statistical accuracy.  相似文献   

15.
The smoothing parameter selection by the one-sided cross-validation (OSCV) method is completely automatic in that it does not require extra parameters estimation. Also it reduces the variability comparable to that of plug-in rules. In this paper we derive analytically the asymptotic variance of the smoothing parameter selected by OSCV. It shows the dependency of the stability on the one-sided kerenl and tells the possibility of the optimal one-sided kernel which minimizes the asymptotic variability.  相似文献   

16.
ABSTRACT

This article considers nonparametric regression problems and develops a model-averaging procedure for smoothing spline regression problems. Unlike most smoothing parameter selection studies determining an optimum smoothing parameter, our focus here is on the prediction accuracy for the true conditional mean of Y given a predictor X. Our method consists of two steps. The first step is to construct a class of smoothing spline regression models based on nonparametric bootstrap samples, each with an appropriate smoothing parameter. The second step is to average bootstrap smoothing spline estimates of different smoothness to form a final improved estimate. To minimize the prediction error, we estimate the model weights using a delete-one-out cross-validation procedure. A simulation study has been performed by using a program written in R. The simulation study provides a comparison of the most well known cross-validation (CV), generalized cross-validation (GCV), and the proposed method. This new method is straightforward to implement, and gives reliable performances in simulations.  相似文献   

17.
The location model is a familiar basis for discriminant analysis of mixtures of categorical and continuous variables. Its usual implementation involves second-order smoothing, using multivariate regression for the continuous variables and log-linear models for the categorical variables. In spite of the smoothing, these procedures still require many parameters to be estimated and this in turn restricts the categorical variables to a small number if implementation is to be feasible. In this paper we propose non-parametric smoothing procedures for both parts of the model. The number of parameters to be estimated is dramatically reduced and the range of applicability thereby greatly increased. The methods are illustrated on several data sets, and the performances are compared with a range of other popular discrimination techniques. The proposed method compares very favourably with all its competitors.  相似文献   

18.
Typically, an optimal smoothing parameter in a penalized spline regression is determined by minimizing an information criterion, such as one of the C p , CV and GCV criteria. Since an explicit solution to the minimization problem for an information criterion cannot be obtained, it is necessary to carry out an iterative procedure to search for the optimal smoothing parameter. In order to avoid such extra calculation, a non-iterative optimization method for smoothness in penalized spline regression is proposed using the formulation of generalized ridge regression. By conducting numerical simulations, we verify that our method has better performance than other methods which optimize the number of basis functions and the single smoothing parameter by means of the CV or GCV criteria.  相似文献   

19.
A smoothing parameter inversely proportional to the square root of the true density is known to produce kernel estimates of the density having faster bias rate of convergence. We show that in the case of kernel-based nonparametric hazard rate estimation, a smoothing parameter inversely proportional to the square root of the true hazard rate leads to a mean square error rate of order n ?8/9, an improvement over the standard second order kernel. An adaptive version of such a procedure is considered and analyzed.  相似文献   

20.
This article introduces a regularized logistic discrimination method that is especially suited for discretized stochastic processes (such as periodograms, spectrograms, EEG curves, etc.). The proposed method penalizes the total variation of the discriminant directions, giving smaller misclassification errors than alternative methods, and smoother and more easily interpretable discriminant directions. The properties of the new method are studied by simulation and by a real-data example involving classification of phonemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号