首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let X be a N(μ, σ 2) distributed characteristic with unknown σ. We present the minimax version of the two-stage t test having minimal maximal average sample size among all two-stage t tests obeying the classical two-point-condition on the operation characteristic. We give several examples. Furthermore, the minimax version of the two-stage t test is compared with the corresponding two-stage Gauß test.  相似文献   

2.
Estimation and inference in time-to-event analysis typically focus on hazard functions and their ratios under the Cox proportional hazards model. These hazard functions, while popular in the statistical literature, are not always easily or intuitively communicated in clinical practice, such as in the settings of patient counseling or resource planning. Expressing and comparing quantiles of event times may allow for easier understanding. In this article we focus on residual time, i.e., the remaining time-to-event at an arbitrary time t given that the event has yet to occur by t. In particular, we develop estimation and inference procedures for covariate-specific quantiles of the residual time under the Cox model. Our methods and theory are assessed by simulations, and demonstrated in analysis of two real data sets.  相似文献   

3.
We propose a novel Bayesian analysis of the p-variate skew-t model, providing a new parameterization, a set of non-informative priors and a sampler specifically designed to explore the posterior density of the model parameters. Extensions, such as the multivariate regression model with skewed errors and the stochastic frontiers model, are easily accommodated. A novelty introduced in the paper is given by the extension of the bivariate skew-normal model given in Liseo and Parisi (2013) to a more realistic p-variate skew-t model. We also introduce the R package mvst, which produces a posterior sample for the parameters of a multivariate skew-t model.  相似文献   

4.
Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC) method for sampling from a multimodal density π(θ). Typically, ST involves introducing an auxiliary variable k taking values in a finite subset of [0,1] and indexing a set of tempered distributions, say π k (θ) π(θ) k . In this case, small values of k encourage better mixing, but samples from π are only obtained when the joint chain for (θ,k) reaches k=1. However, the entire chain can be used to estimate expectations under π of functions of interest, provided that importance sampling (IS) weights are calculated. Unfortunately this method, which we call importance tempering (IT), can disappoint. This is partly because the most immediately obvious implementation is naïve and can lead to high variance estimators. We derive a new optimal method for combining multiple IS estimators and prove that the resulting estimator has a highly desirable property related to the notion of effective sample size. We briefly report on the success of the optimal combination in two modelling scenarios requiring reversible-jump MCMC, where the naïve approach fails.  相似文献   

5.
This paper discusses the contribution of Cerioli et al. (Stat Methods Appl, 2018), where robust monitoring based on high breakdown point estimators is proposed for multivariate data. The results follow years of development in robust diagnostic techniques. We discuss the issues of extending data monitoring to other models with complex structure, e.g. factor analysis, mixed linear models for which S and MM-estimators exist or deviating data cells. We emphasise the importance of robust testing that is often overlooked despite robust tests being readily available once S and MM-estimators have been defined. We mention open questions like out-of-sample inference or big data issues that would benefit from monitoring.  相似文献   

6.
The r largest order statistics approach is widely used in extreme value analysis because it may use more information from the data than just the block maxima. In practice, the choice of r is critical. If r is too large, bias can occur; if too small, the variance of the estimator can be high. The limiting distribution of the r largest order statistics, denoted by GEV\(_r\), extends that of the block maxima. Two specification tests are proposed to select r sequentially. The first is a score test for the GEV\(_r\) distribution. Due to the special characteristics of the GEV\(_r\) distribution, the classical chi-square asymptotics cannot be used. The simplest approach is to use the parametric bootstrap, which is straightforward to implement but computationally expensive. An alternative fast weighted bootstrap or multiplier procedure is developed for computational efficiency. The second test uses the difference in estimated entropy between the GEV\(_r\) and GEV\(_{r-1}\) models, applied to the r largest order statistics and the \(r-1\) largest order statistics, respectively. The asymptotic distribution of the difference statistic is derived. In a large scale simulation study, both tests held their size and had substantial power to detect various misspecification schemes. A new approach to address the issue of multiple, sequential hypotheses testing is adapted to this setting to control the false discovery rate or familywise error rate. The utility of the procedures is demonstrated with extreme sea level and precipitation data.  相似文献   

7.
In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box–Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter \(\lambda _T\), for each T, is not a straightforward task. Additionally, little prior information for \(\lambda _T\) is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for \(\lambda _T\). We study the behaviour of each approach using a simulated reference example as well as two real-life examples.  相似文献   

8.
Consider an experiment for comparing a set of treatments: in each trial, one treatment is chosen and its effect determines the mean response of the trial. We examine the optimal approximate designs for the estimation of a system of treatment contrasts under this model. These designs can be used to provide optimal treatment proportions in more general models with nuisance effects. For any system of pairwise treatment comparisons, we propose to represent such a system by a graph. Then, we represent the designs by the inverses of the vertex weights in the corresponding graph and we show that the values of the eigenvalue-based optimality criteria can be expressed using the Laplacians of the vertex-weighted graphs. We provide a graph theoretic interpretation of D-, A- and E-optimality for estimating sets of pairwise comparisons. We apply the obtained graph representation to provide optimality results for these criteria as well as for ’symmetric’ systems of treatment contrasts.  相似文献   

9.
One important goal in multi-state modelling is to explore information about conditional transition-type-specific hazard rate functions by estimating influencing effects of explanatory variables. This may be performed using single transition-type-specific models if these covariate effects are assumed to be different across transition-types. To investigate whether this assumption holds or whether one of the effects is equal across several transition-types (cross-transition-type effect), a combined model has to be applied, for instance with the use of a stratified partial likelihood formulation. Here, prior knowledge about the underlying covariate effect mechanisms is often sparse, especially about ineffectivenesses of transition-type-specific or cross-transition-type effects. As a consequence, data-driven variable selection is an important task: a large number of estimable effects has to be taken into account if joint modelling of all transition-types is performed. A related but subsequent task is model choice: is an effect satisfactory estimated assuming linearity, or is the true underlying nature strongly deviating from linearity? This article introduces component-wise Functional Gradient Descent Boosting (short boosting) for multi-state models, an approach performing unsupervised variable selection and model choice simultaneously within a single estimation run. We demonstrate that features and advantages in the application of boosting introduced and illustrated in classical regression scenarios remain present in the transfer to multi-state models. As a consequence, boosting provides an effective means to answer questions about ineffectiveness and non-linearity of single transition-type-specific or cross-transition-type effects.  相似文献   

10.
The skew t-distribution includes both the skew normal and the normal distributions as special cases. Inference for the skew t-model becomes problematic in these cases because the expected information matrix is singular and the parameter corresponding to the degrees of freedom takes a value at the boundary of its parameter space. In particular, the distributions of the likelihood ratio statistics for testing the null hypotheses of skew normality and normality are not asymptotically \(\chi ^2\). The asymptotic distributions of the likelihood ratio statistics are considered by applying the results of Self and Liang (J Am Stat Assoc 82:605–610, 1987) for boundary-parameter inference in terms of reparameterizations designed to remove the singularity of the information matrix. The Self–Liang asymptotic distributions are mixtures, and it is shown that their accuracy can be improved substantially by correcting the mixing probabilities. Furthermore, although the asymptotic distributions are non-standard, versions of Bartlett correction are developed that afford additional accuracy. Bootstrap procedures for estimating the mixing probabilities and the Bartlett adjustment factors are shown to produce excellent approximations, even for small sample sizes.  相似文献   

11.
In this paper we design a sure independent ranking and screening procedure for censored regression (cSIRS, for short) with ultrahigh dimensional covariates. The inverse probability weighted cSIRS procedure is model-free in the sense that it does not specify a parametric or semiparametric regression function between the response variable and the covariates. Thus, it is robust to model mis-specification. This model-free property is very appealing in ultrahigh dimensional data analysis, particularly when there is lack of information for the underlying regression structure. The cSIRS procedure is also robust in the presence of outliers or extreme values as it merely uses the rank of the censored response variable. We establish both the sure screening and the ranking consistency properties for the cSIRS procedure when the number of covariates p satisfies \(p=o\{\exp (an)\}\), where a is a positive constant and n is the available sample size. The advantages of cSIRS over existing competitors are demonstrated through comprehensive simulations and an application to the diffuse large-B-cell lymphoma data set.  相似文献   

12.
This paper addresses the issue of estimating the expectation of a real-valued random variable of the form \(X = g(\mathbf {U})\) where g is a deterministic function and \(\mathbf {U}\) can be a random finite- or infinite-dimensional vector. Using recent results on rare event simulation, we propose a unified framework for dealing with both probability and mean estimation for such random variables, i.e. linking algorithms such as Tootsie Pop Algorithm or Last Particle Algorithm with nested sampling. Especially, it extends nested sampling as follows: first the random variable X does not need to be bounded any more: it gives the principle of an ideal estimator with an infinite number of terms that is unbiased and always better than a classical Monte Carlo estimator—in particular it has a finite variance as soon as there exists \(k \in \mathbb {R}> 1\) such that \({\text {E}}\left[ X^k \right] < \infty \). Moreover we address the issue of nested sampling termination and show that a random truncation of the sum can preserve unbiasedness while increasing the variance only by a factor up to 2 compared to the ideal case. We also build an unbiased estimator with fixed computational budget which supports a Central Limit Theorem and discuss parallel implementation of nested sampling, which can dramatically reduce its running time. Finally we extensively study the case where X is heavy-tailed.  相似文献   

13.
Missing observations often occur in cross-classified data collected during observational, clinical, and public health studies. Inappropriate treatment of missing data can reduce statistical power and give biased results. This work extends the Baker, Rosenberger and Dersimonian modeling approach to compute maximum likelihood estimates for cell counts in three-way tables with missing data, and studies the association between two dichotomous variables while controlling for a third variable in \( 2\times 2 \times K \) tables. This approach is applied to the Behavioral Risk Factor Surveillance System data. Simulation studies are used to investigate the efficiency of estimation of the common odds ratio.  相似文献   

14.
In this paper, we consider the problem of hypotheses testing about the drift parameter \(\theta \) in the process \(\text {d}Y^{\delta }_{t} = \theta \dot{f}(t)Y^{\delta }_{t}\text {d}t + b(t)\text {d}L^{\delta }_{t}\) driven by symmetric \(\delta \)-stable Lévy process \(L^{\delta }_{t}\) with \(\dot{f}(t)\) being the derivative of a known increasing function f(t) and b(t) being known as well. We consider the hypotheses testing \(H_{0}: \theta \le 0\) and \(K_{0}: \theta =0\) against the alternatives \(H_{1}: \theta >0\) and \(K_{1}: \theta \ne 0\), respectively. For these hypotheses, we propose inverse methods, which are motivated by sequential approach, based on the first hitting time of the observed process (or its absolute value) to a pre-specified boundary or two boundaries until some given time. The applicability of these methods is illustrated. For the case \(Y^{\delta }_{0}=0\), we are able to calculate the values of boundaries and finite observed times more directly. We are able to show the consistencies of proposed tests for \(Y^{\delta }_{0}\ge 0\) with \(\delta \in (1,2]\) and for \(Y^{\delta }_{0}=0\) with \(\delta \in (0,2]\) under quite mild conditions.  相似文献   

15.
Let \({\{X_n, n\geq 1\}}\) be a sequence of independent and identically distributed non-degenerated random variables with common cumulative distribution function F. Suppose X 1 is concentrated on 0, 1, . . . , N ≤ ∞ and P(X 1 = 1) > 0. Let \({X_{U_w(n)}}\) be the n-th upper weak record value. In this paper we show that for any fixed m ≥ 2, X 1 has Geometric distribution if and only if \({X_{U_{w}(m)}\mathop=\limits^d X_1+\cdots+X_m ,}\) where \({\underline{\underline{d}}}\) denotes equality in distribution. Our result is a generalization of the case m = 2 obtained by Ahsanullah (J Stat Theory Appl 8(1):5–16, 2009).  相似文献   

16.
Kernel smoothing of spatial point data can often be improved using an adaptive, spatially varying bandwidth instead of a fixed bandwidth. However, computation with a varying bandwidth is much more demanding, especially when edge correction and bandwidth selection are involved. This paper proposes several new computational methods for adaptive kernel estimation from spatial point pattern data. A key idea is that a variable-bandwidth kernel estimator for d-dimensional spatial data can be represented as a slice of a fixed-bandwidth kernel estimator in \((d+1)\)-dimensional scale space, enabling fast computation using Fourier transforms. Edge correction factors have a similar representation. Different values of global bandwidth correspond to different slices of the scale space, so that bandwidth selection is greatly accelerated. Potential applications include estimation of multivariate probability density and spatial or spatiotemporal point process intensity, relative risk, and regression functions. The new methods perform well in simulations and in two real applications concerning the spatial epidemiology of primary biliary cirrhosis and the alarm calls of capuchin monkeys.  相似文献   

17.
A typical problem in optimal design theory is finding an experimental design that is optimal with respect to some criteria in a class of designs. The most popular criteria include the A- and D-criteria. Regular graph designs occur in many optimality results, and if the number of blocks is large enough, an A-optimal (or D-optimal) design is among them (if any exist). To explore the landscape of designs with a large number of blocks, we introduce extensions of regular graph designs. These are constructed by adding the blocks of a balanced incomplete block design repeatedly to the original design. We present the results of an exact computer search for the best regular graph designs and the best extended regular graph designs with up to 20 treatments v, block size \(k \le 10\) and replication r \(\le 10\) and \(r(k-1)-(v-1)\lfloor r(k-1)/(v-1)\rfloor \le 9\).  相似文献   

18.
The aim of this paper is to study the asymptotic properties of a class of kernel conditional mode estimates whenever functional stationary ergodic data are considered. To be more precise on the matter, in the ergodic data setting, we consider a random elements (XZ) taking values in some semi-metric abstract space \(E\times F\). For a real function \(\varphi \) defined on the space F and \(x\in E\), we consider the conditional mode of the real random variable \(\varphi (Z)\) given the event “\(X=x\)”. While estimating the conditional mode function, say \(\theta _\varphi (x)\), using the well-known kernel estimator, we establish the strong consistency with rate of this estimate uniformly over Vapnik–Chervonenkis classes of functions \(\varphi \). Notice that the ergodic setting offers a more general framework than the usual mixing structure. Two applications to energy data are provided to illustrate some examples of the proposed approach in time series forecasting framework. The first one consists in forecasting the daily peak of electricity demand in France (measured in Giga-Watt). Whereas the second one deals with the short-term forecasting of the electrical energy (measured in Giga-Watt per Hour) that may be consumed over some time intervals that cover the peak demand.  相似文献   

19.
We develop a new robust stopping criterion for partial least squares regression (PLSR) component construction, characterized by a high level of stability. This new criterion is universal since it is suitable both for PLSR and extensions to generalized linear regression (PLSGLR). The criterion is based on a non-parametric bootstrap technique and must be computed algorithmically. It allows the testing of each successive component at a preset significance level \(\alpha \). In order to assess its performance and robustness with respect to various noise levels, we perform dataset simulations in which there is a preset and known number of components. These simulations are carried out for datasets characterized both by \(n>p\), with n the number of subjects and p the number of covariates, as well as for \(n<p\). We then use t-tests to compare the predictive performance of our approach with other common criteria. The stability property is in particular tested through re-sampling processes on a real allelotyping dataset. An important additional conclusion is that this new criterion gives globally better predictive performances than existing ones in both the PLSR and PLSGLR (logistic and poisson) frameworks.  相似文献   

20.
Mediation analysis often requires larger sample sizes than main effect analysis to achieve the same statistical power. Combining results across similar trials may be the only practical option for increasing statistical power for mediation analysis in some situations. In this paper, we propose a method to estimate: (1) marginal means for mediation path a, the relation of the independent variable to the mediator; (2) marginal means for path b, the relation of the mediator to the outcome, across multiple trials; and (3) the between-trial level variance–covariance matrix based on a bivariate normal distribution. We present the statistical theory and an R computer program to combine regression coefficients from multiple trials to estimate a combined mediated effect and confidence interval under a random effects model. Values of coefficients a and b, along with their standard errors from each trial are the input for the method. This marginal likelihood based approach with Monte Carlo confidence intervals provides more accurate inference than the standard meta-analytic approach. We discuss computational issues, apply the method to two real-data examples and make recommendations for the use of the method in different settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号