首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The incorporation of prior information about θ, where θ is the success probability in a binomial sampling model, is an essential feature of Bayesian statistics. Methodology based on information-theoretic concepts is introduced which (a) quantifies the amount of information provided by the sample data relative to that provided by the prior distribution and (b) allows for a ranking of prior distributions with respect to conservativeness, where conservatism refers to restraint of extraneous information about θ which is embedded in any prior distribution. In effect, the most conservative prior distribution from a specified class (each member o f which carries the available prior information about θ) is that prior distribution within the class over which the likelihood function has the greatest average domination. The most conservative prior distributions from five different families of prior distributions over the interval (0,1) including the beta distribution are determined and compared for three situations: (1) no prior estimate of θ is available, (2) a prior point estimate or θ is available, and (3) a prior interval estimate of θ is available. The results of the comparisons not only advocate the use of the beta prior distribution in binomial sampling but also indicate which particular one to use in the three aforementioned situations.  相似文献   

2.
Information in a statistical procedure arising from sources other than sampling is called prior information, and its incorporation into the procedure forms the basis of the Bayesian approach to statistics. Under hypergeometric sampling, methodology is developed which quantifies the amount of information provided by the sample data relative to that provided by the prior distribution and allows for a ranking of prior distributions with respect to conservativeness, where conservatism refers to restraint of extraneous information embedded in any prior distribution. The most conservative prior distribution from a specified class (each member of which carries the available prior information) is that prior distribution within the class over which the likelihood function has the greatest average domination. Four different families of prior distributions are developed by considering a Bayesian approach to the formation of lots. The most conservative prior distribution from each of the four families of prior distributions is determined and compared for the situation when no prior information is available. The results of the comparison advocate the use of the Polya (beta-binomial) prior distribution in hypergeometric sampling.  相似文献   

3.
As is the case of many studies, the data collected are limited and an exact value is recorded only if it falls within an interval range. Hence, the responses can be either left, interval or right censored. Linear (and nonlinear) regression models are routinely used to analyze these types of data and are based on normality assumptions for the errors terms. However, those analyzes might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear regression models by replacing the Gaussian assumptions for the random errors with scale mixtures of normal (SMN) distributions. The SMN is an attractive class of symmetric heavy-tailed densities that includes the normal, Student-t, Pearson type VII, slash and the contaminated normal distributions, as special cases. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo algorithm is introduced to carry out posterior inference. A new hierarchical prior distribution is suggested for the degrees of freedom parameter in the Student-t distribution. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measure. The proposed Bayesian methods are implemented in the R package BayesCR. The newly developed procedures are illustrated with applications using real and simulated data.  相似文献   

4.
Summary We propose a new class of prior distributions for the analysis of discrete graphical models. Such a class, obtained following a conditional approach, generalizes the hyper Dirichlet distributions of Dawid and Lauritzen (1993), since it can be extended to non decomposable graphical models. The two classes are compared in terms of model selection, with an application to a medical data-set illustrating the performance of the two resulting procedures. The proposed class turns out to select simpler, more par-simonious structures.  相似文献   

5.
In this paper we consider a binary, monotone system whose component states are dependent through the possible occurrence of independent common shocks, i.e. shocks that destroy several components at once. The individual failure of a component is also thought of as a shock. Such systems can be used to model common cause failures in reliability analysis. The system may be a technological one, or a human being. It is observed until it fails or dies. At this instant, the set of failed components and the failure time of the system are noted. The failure times of the components are not known. These are the so-called autopsy data of the system. For the case of independent components, i.e. no common shocks, Meilijson (1981), Nowik (1990), Antoine et al . (1993) and GTsemyr (1998) discuss the corresponding identifiability problem, i.e. whether the component life distributions can be determined from the distribution of the observed data. Assuming a model where autopsy data is known to be enough for identifia bility, Meilijson (1994) goes beyond the identifiability question and into maximum likelihood estimation of the parameters of the component lifetime distributions based on empirical autopsy data from a sample of several systems. He also considers life-monitoring of some components and conditional life-monitoring of some other. Here a corresponding Bayesian approach is presented for the shock model. Due to prior information one advantage of this approach is that the identifiability problem represents no obstacle. The motivation for introducing the shock model is that the autopsy model is of special importance when components can not be tested separately because it is difficult to reproduce the conditions prevailing in the functioning system. In Gåsemyr & Natvig (1997) we treat the Bayesian approach to life-monitoring and conditional life- monitoring of components  相似文献   

6.
Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.  相似文献   

7.
We consider the Bayesian D-optimal design problem for exponential growth models with one, two or three parameters. For the one-parameter model conditions on the shape of the density of the prior distribution and on the range of its support are given guaranteeing that a one-point design is also Bayesian D-optimal within the class of all designs. In the case of two parameters the best two-point designs are determined and for special prior distributions it is proved that these designs are Bayesian D-optimal. Finally, the exponential growth model with three parameters is investigated. The best three-point designs are characterized by a nonlinear equation. The global optimality of these designs cannot be proved analytically and it is demonstrated that these designs are also Bayesian D-optimal within the class of all designs if gamma-distributions are used as prior distributions.  相似文献   

8.
Summary.  Data comprising colony counts, or a binary variable representing fertile (or sterile) samples, as a dilution series of the containing medium are analysed by using extended Poisson process modelling. These models form a class of flexible probability distributions that are widely applicable to count and grouped binary data. Standard distributions such as Poisson and binomial, and those representing overdispersion and underdispersion relative to these distributions can be expressed within this class. For all the models in the class, likelihoods can be obtained. These models have not been widely used because of the perceived difficulty of performing the calculations and the lack of associated software. Exact calculation of the probabilities that are involved can be time consuming although accurate approximations that use considerably less computational time are available. Although dilution series data are the focus here, the models are applicable to any count or binary data. A benefit of the approach is the ability to draw likelihood-based inferences from the data.  相似文献   

9.
In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.  相似文献   

10.
Abstract. The modelling process in Bayesian Statistics constitutes the fundamental stage of the analysis, since depending on the chosen probability laws the inferences may vary considerably. This is particularly true when conflicts arise between two or more sources of information. For instance, inference in the presence of an outlier (which conflicts with the information provided by the other observations) can be highly dependent on the assumed sampling distribution. When heavy‐tailed (e.g. t) distributions are used, outliers may be rejected whereas this kind of robust inference is not available when we use light‐tailed (e.g. normal) distributions. A long literature has established sufficient conditions on location‐parameter models to resolve conflict in various ways. In this work, we consider a location–scale parameter structure, which is more complex than the single parameter cases because conflicts can arise between three sources of information, namely the likelihood, the prior distribution for the location parameter and the prior for the scale parameter. We establish sufficient conditions on the distributions in a location–scale model to resolve conflicts in different ways as a single observation tends to infinity. In addition, for each case, we explicitly give the limiting posterior distributions as the conflict becomes more extreme.  相似文献   

11.
In this paper, we present an innovative method for constructing proper priors for the skewness (shape) parameter in the skew‐symmetric family of distributions. The proposed method is based on assigning a prior distribution on the perturbation effect of the shape parameter, which is quantified in terms of the total variation distance. We discuss strategies to translate prior beliefs about the asymmetry of the data into an informative prior distribution of this class. We show via a Monte Carlo simulation study that our non‐informative priors induce posterior distributions with good frequentist properties, similar to those of the Jeffreys prior. Our informative priors yield better results than their competitors from the literature. We also propose a scale‐invariant and location‐invariant prior structure for models with unknown location and scale parameters and provide sufficient conditions for the propriety of the corresponding posterior distribution. Illustrative examples are presented using simulated and real data.  相似文献   

12.
Categorical data frequently arise in applications in the Social Sciences. In such applications, the class of log-linear models, based on either a Poisson or (product) multinomial response distribution, is a flexible model class for inference and prediction. In this paper we consider the Bayesian analysis of both Poisson and multinomial log-linear models. It is often convenient to model multinomial or product multinomial data as observations of independent Poisson variables. For multinomial data, Lindley (1964) [20] showed that this approach leads to valid Bayesian posterior inferences when the prior density for the Poisson cell means factorises in a particular way. We develop this result to provide a general framework for the analysis of multinomial or product multinomial data using a Poisson log-linear model. Valid finite population inferences are also available, which can be particularly important in modelling social data. We then focus particular attention on multivariate normal prior distributions for the log-linear model parameters. Here, an improper prior distribution for certain Poisson model parameters is required for valid multinomial analysis, and we derive conditions under which the resulting posterior distribution is proper. We also consider the construction of prior distributions across models, and for model parameters, when uncertainty exists about the appropriate form of the model. We present classes of Poisson and multinomial models, invariant under certain natural groups of permutations of the cells. We demonstrate that, if prior belief concerning the model parameters is also invariant, as is the case in a ‘reference’ analysis, then the choice of prior distribution is considerably restricted. The analysis of multivariate categorical data in the form of a contingency table is considered in detail. We illustrate the methods with two examples.  相似文献   

13.
ABSTRACT

Mixed Poisson distributions are widely used in various applications of count data mainly when extra variation is present. This paper introduces an extension in terms of a mixed strategy to jointly deal with extra-Poisson variation and zero-inflated counts. In particular, we propose the Poisson log-skew-normal distribution which utilizes the log-skew-normal as a mixing prior and present its main properties. This is directly done through additional hierarchy level to the lognormal prior and includes the Poisson lognormal distribution as its special case. Two numerical methods are developed for the evaluation of associated likelihoods based on the Gauss–Hermite quadrature and the Lambert's W function. By conducting simulation studies, we show that the proposed distribution performs better than several commonly used distributions that allow for over-dispersion or zero inflation. The usefulness of the proposed distribution in empirical work is highlighted by the analysis of a real data set taken from health economics contexts.  相似文献   

14.
A scoring rule for evaluating the usefulness of an assessed prior distribution should reflect the purpose for which the distribution is to be used. In this paper we suppose that sample data is to become available and that the posterior distribution will be used to estimate some quantity under a quadratic loss function. The utility of a prior distribution is consequently determined by its preposterior expected quadratic loss. It is shown that this loss function has properties desirable in a scoring rule and formulae are derived for calculating the scores it gives in some common problems. Many scoring rules give a very poor score to any improper prior distribution but, in contrast, the scoring rule proposed here provides a meaningful measure for comparing the usefulness of assessed prior distributions and non-informative (improper) prior distributions. Results for making this comparison in various situations are also given.  相似文献   

15.
We consider the fitting of a Bayesian model to grouped data in which observations are assumed normally distributed around group means that are themselves normally distributed, and consider several alternatives for accommodating the possibility of heteroscedasticity within the data. We consider the case where the underlying distribution of the variances is unknown, and investigate several candidate prior distributions for those variances. In each case, the parameters of the candidate priors (the hyperparameters) are themselves given uninformative priors (hyperpriors). The most mathematically convenient model for the group variances is to assign them inverse gamma distributed priors, the inverse gamma distribution being the conjugate prior distribution for the unknown variance of a normal population. We demonstrate that for a wide class of underlying distributions of the group variances, a model that assigns the variances an inverse gamma-distributed prior displays favorable goodness-of-fit properties relative to other candidate priors, and hence may be used as standard for modeling such data. This allows us to take advantage of the elegant mathematical property of prior conjugacy in a wide variety of contexts without compromising model fitness. We test our findings on nine real world publicly available datasets from different domains, and on a wide range of artificially generated datasets.  相似文献   

16.
《统计学通讯:理论与方法》2012,41(16-17):2944-2958
The focus of this article is on the choice of suitable prior distributions for item parameters within item response theory (IRT) models. In particular, the use of empirical prior distributions for item parameters is proposed. Firstly, regression trees are implemented in order to build informative empirical prior distributions. Secondly, model estimation is conducted within a fully Bayesian approach through the Gibbs sampler, which makes estimation feasible also with increasingly complex models. The main results show that item parameter recovery is improved with the introduction of empirical prior information about item parameters, also when only a small sample is available.  相似文献   

17.
A. R. Soltani  H. Homei 《Statistics》2013,47(6):611-620
A new rich class of generalized two-sided power (TSP) distributions, where their density functions are expressed in terms of the Gauss hypergeometric functions, is introduced and studied. In this class, the symmetric distributions are supported by finite intervals and have normal shape densities. Our study on TSP distributions also leads us to a new class of discrete distributions on {0, 1, …, k}. In addition, a new numerical method for parameter estimation using moments is given.  相似文献   

18.
The robust estimation and the local influence analysis for linear regression models with scale mixtures of multivariate skew-normal distributions have been developed in this article. The main virtue of considering the linear regression model under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows an easy implementation of inference. Inspired by the expectation maximization algorithm, we have developed a local influence analysis based on the conditional expectation of the complete-data log-likelihood function, which is a measurement invariant under reparametrizations. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and with Cook's well-known approach it can be very difficult to obtain measures of the local influence. Some useful perturbation schemes are discussed. In order to examine the robust aspect of this flexible class against outlying and influential observations, some simulation studies have also been presented. Finally, a real data set has been analyzed, illustrating the usefulness of the proposed methodology.  相似文献   

19.
For a class of discrete distributions, including Poisson(θ), Generalized Poisson(θ), Borel(m, θ), etc., we consider minimax estimation of the parameter θ under the assumption it lies in a bounded interval of the form [0, m] and a LINEX loss function. Explicit conditions for the minimax estimator to be Bayes with respect to a boundary supported prior are given. Also for Bernoulli(θ)-distribution, which is not in the mentioned class of discrete distributions, we give conditions for which the Bayes estimator of θ ∈ [0, m], m < 1 with respect to a boundary supported prior is minimax under LINEX loss function. Numerical values are given for the largest values of m for which the corresponding Bayes estimators of θ are minimax.  相似文献   

20.
We propose methods for Bayesian inference for missing covariate data with a novel class of semi-parametric survival models with a cure fraction. We allow the missing covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one dimensional conditional distributions. We assume that the missing covariates are missing at random (MAR) throughout. We propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. The proposed class of priors are shown to be useful in recovering information on the missing covariates especially in situations where the missing data fraction is large. Properties of the proposed prior and resulting posterior distributions are examined. Also, model checking techniques are proposed for sensitivity analyses and for checking the goodness of fit of a particular model. Specifically, we extend the Conditional Predictive Ordinate (CPO) statistic to assess goodness of fit in the presence of missing covariate data. Computational techniques using the Gibbs sampler are implemented. A real data set involving a melanoma cancer clinical trial is examined to demonstrate the methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号