首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The EM algorithm and its extensions are very popular tools for maximum likelihood estimation in incomplete data setting. However, one of the limitations of these methods is their slow convergence. The PX-EM (parameter-expanded EM) algorithm was proposed by Liu, Rubin and Wu to make EM much faster. On the other hand, stochastic versions of EM are powerful alternatives of EM when the E-step is untractable in a closed form. In this paper we propose the PX-SAEM which is a parameter expansion version of the so-called SAEM (Stochastic Approximation version of EM). PX-SAEM is shown to accelerate SAEM and improve convergence toward the maximum likelihood estimate in a parametric framework. Numerical examples illustrate the behavior of PX-SAEM in linear and nonlinear mixed effects models.  相似文献   

2.
We propose a new methodology for maximum likelihood estimation in mixtures of non linear mixed effects models (NLMEM). Such mixtures of models include mixtures of distributions, mixtures of structural models and mixtures of residual error models. Since the individual parameters inside the NLMEM are not observed, we propose to combine the EM algorithm usually used for mixtures models when the mixture structure concerns an observed variable, with the Stochastic Approximation EM (SAEM) algorithm, which is known to be suitable for maximum likelihood estimation in NLMEM and also has nice theoretical properties. The main advantage of this hybrid procedure is to avoid a simulation step of unknown group labels required by a “full” version of SAEM. The resulting MSAEM (Mixture SAEM) algorithm is now implemented in the Monolix software. Several criteria for classification of subjects and estimation of individual parameters are also proposed. Numerical experiments on simulated data show that MSAEM performs well in a general framework of mixtures of NLMEM. Indeed, MSAEM provides an estimator close to the maximum likelihood estimator in very few iterations and is robust with regard to initialization. An application to pharmacokinetic (PK) data demonstrates the potential of the method for practical applications.  相似文献   

3.
We introduce a class of spatial random effects models that have Markov random fields (MRF) as latent processes. Calculating the maximum likelihood estimates of unknown parameters in SREs is extremely difficult, because the normalizing factors of MRFs and additional integrations from unobserved random effects are computationally prohibitive. We propose a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood functions of spatial random effects models. The SAEM algorithm integrates recent improvements in stochastic approximation algorithms; it also includes components of the Newton-Raphson algorithm and the expectation-maximization (EM) gradient algorithm. The convergence of the SAEM algorithm is guaranteed under some mild conditions. We apply the SAEM algorithm to three examples that are representative of real-world applications: a state space model, a noisy Ising model, and segmenting magnetic resonance images (MRI) of the human brain. The SAEM algorithm gives satisfactory results in finding the maximum likelihood estimate of spatial random effects models in each of these instances.  相似文献   

4.
The EM algorithm is a popular method for maximizing a likelihood in the presence of incomplete data. When the likelihood has multiple local maxima, the parameter space can be partitioned into domains of convergence, one for each local maximum. In this paper we investigate these domains for the location family generated by the t-distribution. We show that, perhaps somewhat surprisingly, these domains need not be connected sets. As an extreme case we give an example of a domain which consists of an infinite union of disjoint open intervals. Thus the convergence behaviour of the EM algorithm can be quite sensitive to the starting point.  相似文献   

5.
Parametric incomplete data models defined by ordinary differential equations (ODEs) are widely used in biostatistics to describe biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a numerical integration method. Accurate and efficient estimations of these parameters are critical issues. This paper proposes parameter estimation methods involving either a stochastic approximation EM algorithm (SAEM) in the maximum likelihood estimation, or a Gibbs sampler in the Bayesian approach. Both algorithms involve the simulation of non-observed data with conditional distributions using Hastings–Metropolis (H–M) algorithms. A modified H–M algorithm, including an original local linearization scheme to solve the ODEs, is proposed to reduce the computational time significantly. The convergence on the approximate model of all these algorithms is proved. The errors induced by the numerical solving method on the conditional distribution, the likelihood and the posterior distribution are bounded. The Bayesian and maximum likelihood estimation methods are illustrated on a simulated pharmacokinetic nonlinear mixed-effects model defined by an ODE. Simulation results illustrate the ability of these algorithms to provide accurate estimates.  相似文献   

6.
A maximum likelihood methodology for the parameters of models with an intractable likelihood is introduced. We produce a likelihood-free version of the stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function of model parameters. While SAEM is best suited for models having a tractable “complete likelihood” function, its application to moderately complex models is a difficult or even impossible task. We show how to construct a likelihood-free version of SAEM by using the “synthetic likelihood” paradigm. Our method is completely plug-and-play, requires almost no tuning and can be applied to both static and dynamic models.  相似文献   

7.
A strategy is proposed to initialize the EM algorithm in the multivariate Gaussian mixture context. It consists in randomly drawing, with a low computational cost in many situations, initial mixture parameters in an appropriate space including all possible EM trajectories. This space is simply defined by two relations between the two first empirical moments and the mixture parameters satisfied by any EM iteration. An experimental study on simulated and real data sets clearly shows that this strategy outperforms classical methods, since it has the nice property to widely explore local maxima of the likelihood function.  相似文献   

8.
The paper is focussing on some recent developments in nonparametric mixture distributions. It discusses nonparametric maximum likelihood estimation of the mixing distribution and will emphasize gradient type results, especially in terms of global results and global convergence of algorithms such as vertex direction or vertex exchange method. However, the NPMLE (or the algorithms constructing it) provides also an estimate of the number of components of the mixing distribution which might be not desirable for theoretical reasons or might be not allowed from the physical interpretation of the mixture model. When the number of components is fixed in advance, the before mentioned algorithms can not be used and globally convergent algorithms do not exist up to now. Instead, the EM algorithm is often used to find maximum likelihood estimates. However, in this case multiple maxima are often occuring. An example from a meta-analyis of vitamin A and childhood mortality is used to illustrate the considerable, inferential importance of identifying the correct global likelihood. To improve the behavior of the EM algorithm we suggest a combination of gradient function steps and EM steps to achieve global convergence leading to the EM algorithm with gradient function update (EMGFU). This algorithms retains the number of components to be exactly k and typically converges to the global maximum. The behavior of the algorithm is highlighted at hand of several examples.  相似文献   

9.
Summary.  The expectation–maximization (EM) algorithm is a popular tool for maximizing likelihood functions in the presence of missing data. Unfortunately, EM often requires the evaluation of analytically intractable and high dimensional integrals. The Monte Carlo EM (MCEM) algorithm is the natural extension of EM that employs Monte Carlo methods to estimate the relevant integrals. Typically, a very large Monte Carlo sample size is required to estimate these integrals within an acceptable tolerance when the algorithm is near convergence. Even if this sample size were known at the onset of implementation of MCEM, its use throughout all iterations is wasteful, especially when accurate starting values are not available. We propose a data-driven strategy for controlling Monte Carlo resources in MCEM. The algorithm proposed improves on similar existing methods by recovering EM's ascent (i.e. likelihood increasing) property with high probability, being more robust to the effect of user-defined inputs and handling classical Monte Carlo and Markov chain Monte Carlo methods within a common framework. Because of the first of these properties we refer to the algorithm as 'ascent-based MCEM'. We apply ascent-based MCEM to a variety of examples, including one where it is used to accelerate the convergence of deterministic EM dramatically.  相似文献   

10.
In many studies, the data collected are subject to some upper and lower detection limits. Hence, the responses are either left or right censored. A complication arises when these continuous measures present heavy tails and asymmetrical behavior; simultaneously. For such data structures, we propose a robust-censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows us to estimate the parameters of interest easily and quickly, obtaining as a byproducts the standard errors, predictions of unobservable values of the response and the log-likelihood function. The proposed methods are illustrated through real data applications and several simulation studies.  相似文献   

11.
The expectation-maximization (EM) method facilitates computation of max¬imum likelihood (ML) and maximum penalized likelihood (MPL) solutions. The procedure requires specification of unobservabie complete data which augment the measured or incomplete data. This specification defines a conditional expectation of the complete data log-likelihood function which is computed in the E-stcp. The EM algorithm is most effective when maximizing the iunction Q{0) denned in the F-stnp is easier than maximizing the likelihood function.

The Monte Carlo EM (MCEM) algorithm of Wei & Tanner (1990) was introduced for problems where computation of Q is difficult or intractable. However Monte Carlo can he computationally expensive, e.g. in signal processing applications involving large numbers of parameters. We provide another approach: a modification of thc standard EM algorithm avoiding computation of conditional expectations.  相似文献   

12.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

13.
The skew-generalized-normal distribution [Arellano-Valle, RB, Gómez, HW, Quintana, FA. A new class of skew-normal distributions. Comm Statist Theory Methods 2004;33(7):1465–1480] is a class of asymmetric normal distributions, which contains the normal and skew-normal distributions as special cases. The main virtues of this distribution is that it is easy to simulate from and it also supplies a genuine expectation–maximization (EM) algorithm for maximum likelihood estimation. In this paper, we extend the EM algorithm for linear regression models assuming skew-generalized-normal random errors and we develop a diagnostics analyses via local influence and generalized leverage, following Zhu and Lee's approach. This is because Cook's well-known approach would be more complicated to use to obtain measures of local influence. Finally, results obtained for a real data set are reported, illustrating the usefulness of the proposed method.  相似文献   

14.
The EM algorithm is the standard method for estimating the parameters in finite mixture models. Yang and Pan [25] proposed a generalized classification maximum likelihood procedure, called the fuzzy c-directions (FCD) clustering algorithm, for estimating the parameters in mixtures of von Mises distributions. Two main drawbacks of the EM algorithm are its slow convergence and the dependence of the solution on the initial value used. The choice of initial values is of great importance in the algorithm-based literature as it can heavily influence the speed of convergence of the algorithm and its ability to locate the global maximum. On the other hand, the algorithmic frameworks of EM and FCD are closely related. Therefore, the drawbacks of FCD are the same as those of the EM algorithm. To resolve these problems, this paper proposes another clustering algorithm, which can self-organize local optimal cluster numbers without using cluster validity functions. These numerical results clearly indicate that the proposed algorithm is superior in performance of EM and FCD algorithms. Finally, we apply the proposed algorithm to two real data sets.  相似文献   

15.
Skew scale mixtures of normal distributions are often used for statistical procedures involving asymmetric data and heavy-tailed. The main virtue of the members of this family of distributions is that they are easy to simulate from and they also supply genuine expectation-maximization (EM) algorithms for maximum likelihood estimation. In this paper, we extend the EM algorithm for linear regression models and we develop diagnostics analyses via local influence and generalized leverage, following Zhu and Lee's approach. This is because Cook's well-known approach cannot be used to obtain measures of local influence. The EM-type algorithm has been discussed with an emphasis on the skew Student-t-normal, skew slash, skew-contaminated normal and skew power-exponential distributions. Finally, results obtained for a real data set are reported, illustrating the usefulness of the proposed method.  相似文献   

16.
To obtain maximum likelihood (ML) estimation in factor analysis (FA), we propose in this paper a novel and fast conditional maximization (CM) algorithm, which has quadratic and monotone convergence, consisting of a sequence of CM log-likelihood (CML) steps. The main contribution of this algorithm is that the closed form expression for the parameter to be updated in each step can be obtained explicitly, without resorting to any numerical optimization methods. In addition, a new ECME algorithm similar to Liu’s (Biometrika 81, 633–648, 1994) one is obtained as a by-product, which turns out to be very close to the simple iteration algorithm proposed by Lawley (Proc. R. Soc. Edinb. 60, 64–82, 1940) but our algorithm is guaranteed to increase log-likelihood at every iteration and hence to converge. Both algorithms inherit the simplicity and stability of EM but their convergence behaviors are much different as revealed in our extensive simulations: (1) In most situations, ECME and EM perform similarly; (2) CM outperforms EM and ECME substantially in all situations, no matter assessed by the CPU time or the number of iterations. Especially for the case close to the well known Heywood case, it accelerates EM by factors of around 100 or more. Also, CM is much more insensitive to the choice of starting values than EM and ECME.  相似文献   

17.
The purpose of this work is, on the one hand, to study how to forecast road trafficking on highway networks and, on the other hand, to describe future traffic events. Here, road trafficking is measured by vehicle velocities. The authors propose two methodologies. The first is based on an empirical classification method, and the second on a probability mixture model. They use an SAEM‐type algorithm (a stochastic approximation of the EM algorithm) to select the densities of the mixture model. Then, they test the validity of their methodologies by forecasting short term travel times.  相似文献   

18.
Abstract.  The expectation-maximization (EM) algorithm is a popular approach for obtaining maximum likelihood estimates in incomplete data problems because of its simplicity and stability (e.g. monotonic increase of likelihood). However, in many applications the stability of EM is attained at the expense of slow, linear convergence. We have developed a new class of iterative schemes, called squared iterative methods (SQUAREM), to accelerate EM, without compromising on simplicity and stability. SQUAREM generally achieves superlinear convergence in problems with a large fraction of missing information. Globally convergent schemes are easily obtained by viewing SQUAREM as a continuation of EM. SQUAREM is especially attractive in high-dimensional problems, and in problems where model-specific analytic insights are not available. SQUAREM can be readily implemented as an 'off-the-shelf' accelerator of any EM-type algorithm, as it only requires the EM parameter updating. We present four examples to demonstrate the effectiveness of SQUAREM. A general-purpose implementation (written in R) is available.  相似文献   

19.
This paper examines the formation of maximum likelihood estimates of cell means in analysis of variance problems for cells with missing observations. Methods of estimating the means for missing cells has a long history which includes iterative maximum likelihood techniques, approximation techniques and ad hoc techniques. The use of the EM algorithm to form maximum likelihood estimates has resolved most of the issues associated with this problem. Implementation of the EM algorithm entails specification of a reduced model. As demonstrated in this paper, when there are several missing cells, it is possible to specify a reduced model that results in an unidentifiable likelihood. The EM algorithm in this case does not converge, although the slow divergence may often be mistaken by the unwary as convergence. This paper presents a simple matrix method of determining whether or not the reduced model results in an identifiable likelihood, and consequently in an EM algorithm that converges. We also show the EM algorithm in this case to be equivalent to a method which yields a closed form solution.  相似文献   

20.
We propose here a robust multivariate extension of the bivariate Birnbaum–Saunders (BS) distribution derived by Kundu et al. [Bivariate Birnbaum–Saunders distribution and associated inference. J Multivariate Anal. 2010;101:113–125], based on scale mixtures of normal (SMN) distributions that are used for modelling symmetric data. This resulting multivariate BS-type distribution is an absolutely continuous distribution whose marginal and conditional distributions are of BS-type distribution of Balakrishnan et al. [Estimation in the Birnbaum–Saunders distribution based on scalemixture of normals and the EM algorithm. Stat Oper Res Trans. 2009;33:171–192]. Due to the complexity of the likelihood function, parameter estimation by direct maximization is very difficult to achieve. For this reason, we exploit the nice hierarchical representation of the proposed distribution to propose a fast and accurate EM algorithm for computing the maximum likelihood (ML) estimates of the model parameters. We then evaluate the finite-sample performance of the developed EM algorithm and the asymptotic properties of the ML estimates through empirical experiments. Finally, we illustrate the obtained results with a real data and display the robustness feature of the estimation procedure developed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号