首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary An age-structured population dynamics model is presented that incorporates pheromone-trapping and food-trapping as control methods for an insect pest. The model yields the following results. Low rates of pest survivorship allow lower trapping rates for control. Species with long developmental periods are easier to control than those with shorter developmental periods (other factors being equal) due to lower net survival. The rates of pheromone trapping alone for effective control are usually very high. The combination of pheromone and food trapping allows control with much lower trapping rates than either method alone. Even small amounts of immigration of adult pests into the control area renders pheromone control ineffective, whereas food traps suppress both the immigrants and the resident population. Food- (or odor-) baited traps which attract both males and females are only somewhat more efficient than those which attract females alone. The existence of density-dependent population regulation assists the control program substantially, but this assistance declines as food trapping becomes a more important part of the control program. Larval competition strongly affects the required trapping rates for eradication; species in which all larvae exert strong competition are much easier to control than those in whic the younger larvae contribute little to the total competitive depression.  相似文献   

2.
Models are presented to investigate the population dynamic behavior of a pest population with the release of pheromone for mating disruption. Three mechanisms of mating disruption are considered: (i) confusion of males, (ii) competition with female pheromone trails yielding false trail following, (iii) emigration of males prior to mating. In addition, several refinements to confusion are considered. Confusion and emigration of males were found to be very similar both quantitatively and dynamically; also, a combination of both mechanisms was very little more efficient than either one separately. False trail following is difficult to compare with the other two, since competition with wild females is involved and thus the total population size enters the equations. Density dependence of the action of pheromones results in some cases in which mating disruption cannot control the pest population. Similarly, aggregation of the pest population decreases the efficiency of the method unless the pheromone action is density independent. Delayed mating of females makes control easier, and may constitute one mechanism for mating disruption.  相似文献   

3.
Summary A methodology is developed to assess the effects of spatial distribution on the efficiency of insect pest control. This methodology is especially applicable to pest control methods whose efficiency of action depends either positively or negatively on pest density It is applied here to the sterile insect technique and pheromone trapping for male annihilation, which both depend negatively on density. This methodology relies on quantifying clumps of various size and then relating this to efficiency of control and predicting the total pest production given the information on clump sizes and efficiency of control for each clump size. It is found that control is about four times as difficult for a population that is highly clumped (k of the negative binomial distribution=0.25) as for a regularly dispersed population.  相似文献   

4.
Summary Several models are presented which examine pest population behaviour with the release of female sex pheromones for the attraction and annihilation of males. These models include male polygamy and female monogamy, various mating frequencies, delayed mating of females, immigration of one or all individual types, and differential survivorship of males and females. In all the models there are two steady states, a stable s.s. at the origin and an unstable s.s. in the positive domain for a given value of pheromone release rate. In all the models, control relies on the reduced ability of males to fertilize virgin females following trapping and male annihilation. As such, control is very sensitive to mating frequency, being very difficult when males mate frequently. Control is also very difficult with the immigration of even a moderate number of fertilized females. Control is much easier when mating is delayed, especially if survivorship is low, or with density dependent population regulation.  相似文献   

5.
The development of resistance to insecticides is now widespread among insects. Other methods of pest control are also potentially at risk of encountering resistance. A modelling approach is presented here to evaluate the effects of combining methods of insect pest control on the selection for resistance to the control methods. This analysis is based on partitioning the total mortality acting on a population into its constituent components from all known sources, and these are related to selection for resistance. When two control methods are used in combination, selection for resistance against the two is a linear function if the two don't interact, otherwise it may be sublinear or supralinear. A specific example is presented using a model of the Olive fruit fly (Dacus oleae Gmel.) and employing food-baited and pheromone-baited traps for control. The control methods that appear least likely to encounter resistance are natural enemies and the use of pheromone traps for male annihilation. These should be integrated into a control program where possible to minimize the development of resistance to other control methods being used.  相似文献   

6.
Summary An age-structured population model is used as a vehicle for presenting a method for the analysis of interactions between pairs of insect pest control methods. This analysis is based on partitioning the total mortality acting on a population into its constituent components from all known sources. Pairwise critical mortality curves are then constructed which represent the combined mortality required for eradicating the pest population. Effort curves are then constructed from computing the mortality resulting from a given amount of control effort. The convolution of the critical mortality curves and the effort curves then yields the isoclines formed by the effort required of two control methods in combination to achieve eradication. This analysis allows the prediction of either synergism or interference between the control methods and also helps explain patterns observed in previous modelling of such combinations of pest control methods.  相似文献   

7.
We have not yet had sufficient theoretical explanation for successful biological control in which a key pest is controlled after an introduction of natural enemies. I compare here real features of successful biological control and theoretical host–parasitoid population models to reduce the gap between theory and practice. I first review the historical interaction between classical biological control projects and theoretical population models. Second, I consider the importance of host refuges in host–parasitoid population dynamics as concerns the mechanisms of low and stable host density. The importance of density–dependent parasitism through parasitoid reproduction in multivoltine host–parasitoid systems and supplemental generalist natural enemies are also discussed. Finally, I consider the difference in tactics for classical biological control and for augmentation of natural enemies in annual crop systems. Received: December 20, 1998 / Accepted: January 15, 1999  相似文献   

8.
Summary The virgin female introduced pine sawfly,Diprion similis (Hartig), produces a powerful sex pheromone capable of attracting males. Pending chemical identification of the substance, a pilot study in male annihilation is under consideration. A mathematical model was developed to assess the feasibility of population suppression using pheromone-baited traps. Departure from preexisting population models resulted chiefly from the arrhenotokous nature of the sawfly. The model predicts alternating sawfly generations which undergo first a large shift in the sex ratio but no population reduction, followed by a large decrease in population size with a moderating sex ratio. Four generations of intensive trapping would theoretically be sufficient to eliminate the sawfly from an isolated area.  相似文献   

9.
Summary Among parasitoids which host-feed destructively, there is a tendency for females to partition their feeding and oviposition behaviour in relation to different host stages, feeding preferentially or exclusively on earlier host stages and ovipositing preferentially or exclusively in (or on) later ones. We explored the dynamic implications of this behaviour for parasitoid-host population dynamics, using modifications of the age-structured simulation models of Kidd and Jervis (1989, 1991). Using the new versions of the models, we compared the situation where parasitoids practice host stage discrimination with respect to feeding and oviposition, with the situation where they do not. Additionally, we examined the effects of host stage discrimination on populations by (a) having generations either discrete or overlapping, (b) varying initial age structure, (c) having varying degrees of density dependence acting on host adult mortality, and (d) varying parasitoid develoment times in relation to the length of host development. With either discrete or overlapping generations of the host population, a reduction in the parasitoid development time had a destabilizing influence on the parasitoid-host population interaction. With discrete generations stage discrimination had no effect on the risk of extinction, irrespective of either the degree of density dependence acting on the host population, or the initial age structure of the host population. When parasitoid search was uncoupled from the insect's adult energy requirements, the interaction was always unstable. With continuous generations, stage discrimination affected stability at certain parasitoid development times, but not at others. The relative lengths of parasitoid and host development times also influenced the tendency of the host population to show discrete or overlapping generations.  相似文献   

10.
Population dynamics of a leafminer,Chromatomyia suikazurae (Agromyzidae, Diptera) and its parasitoid community were studied for ten years at seven natural populations along an altitudinal gradient in Japan. This species which mines leaves of a forest shrub,Lonicera gracilipes (Caprifoliaceae), was attacked by 25 hymenopterous parasitoid species. Annually, the parasitoid community structure varied less within a population than among populations. The seven parasitoid communities were clustered into three groups corresponding to the altitudinal gradient: (a) lowland communities dominated by late-attacking, generalist pupal idiobiont eulophids and with highest species diversity, (b) hillside communities dominated by an early-attacking, specialist larval-pupal koinobiont braconid and (c) highland communities dominated by an early-attacking, generalist larval idiobiont eulophid. Annual changes of the host larval densities among the local populations were largely synchronous rather than cyclic. Among these populations, host density levels and mortality patterns greatly varied. By analyzing these inter-populational differences of host mortality patterns, the following conclusions were drawn: (1) The host mortality patterns were determined by the host utilization patterns of the locally dominant species. (2) The host pupal mortality but not larval mortality was related to species diversity but not to species richness itself of each parasitoid community. (3) Density dependence was detected only in pupal mortality at a lowland population dominated by late-attacking pupal parasitoids. These results suggest that interspecific interactions of parasitoids add additive effects to host population dynamics dissimilarly among local populations with different parasitoid communities.  相似文献   

11.
Summary The stability of a pest population is one of the critical features to be examined when considering a control strategy for a given pest species. Four models involviing sterile male releases are examined for various stability characteristics; the models examined were: (i) a simple one stage model with no species interactions, (ii) a two life-stage model, (iii) a model involving two competing species, (iv) a model in which the pest is under predation. Of the four, the simple model was the most stable and the predation model was the least stable under continued sterile releases.  相似文献   

12.
Summary Based on the results of ecological surveys ofAdoxophyes orana and its natural enemies in apple orchards sprayed with the granulosis virus and control plots, we constructed working models to simulate the population dynamics in three different experimental plots; those treated with chemical insecticides, those with granulosis virus, and controls. The number of individuals killed by predators, parasitoids and by miscellaneous mortality factors could be calculated on the assumption of imperfect density relations; that is, relation of the number killed by each factor with the initial number of larvae was represented by a curve with an upper asymptote. We could estimate the proportion of virus infection using curves with upper asymptotes. Rate of increase from pupa to middle instar larvae of the next generation was subject to strong density-effect. Simulation we proposed in this paper suggests a possibility that a single spray of the virus at 1st generation can reduce not only the number ofA. orana larvae in the 2nd and 3rd generations but also the degree of fruits injured by this insect. Spray of chemical insecticide is considered to be ineffective in reducing the pest density and the degree of injury to low levels in subsequent generations, as compared with untreated plot, where the density of the 1st generation larvae is low.  相似文献   

13.
Life history traits of the phytophagous ladybird beetle Epilachna yasutomii were compared between a nonpest population feeding on wild blue cohosh and a pest population feeding on cultivated solanaceous crops, mainly potato. Newly emerged adults of the nonpest population entered diapause early in midsummer when blue cohosh withered, while adults of the pest population were found in tomato and eggplant fields until late autumn. The pest population had larger females, a higher population growth rate, a shorter larval developmental period, and reduced longevity of overwintered females, compared with the nonpest population. ANOVA indicated that all these life history traits were influenced by the food plant, and that the number of eggs laid per female and the longevity of overwintered females were also affected by the population type. These findings suggest that the life history pattern of E. yasutomii changed to high fecundity with a short life span from low fecundity with a long life span as a result of the host shift from wild blue cohosh to cultivated solanaceous crops. Received: May 22, 1998 / Accepted: January 13, 1999  相似文献   

14.
Wolbachia bacteria are obligatory intracellular parasites of arthropods and have been detected in about 70 species of parasitic wasps and three parasitoid flies. Wolbachia are transmitted cytoplasmically (maternally) and modify host reproduction in different ways to enhance their own transmission: parthenogenesis induction (PI), cytoplasmic incompatibility (CI), or feminization (F) of genetic males. Only PI and CI are known in parasitoids. PI-Wolbachia cause thelytoky in otherwise arrhenotokous parasitoids by generating diploid (rather than haploid) unfertilized wasp eggs. CI-Wolbachia cause incompatibility of crosses between infected males and uninfected females because the paternally derived chromosomes fail to decondense and are destroyed after syngamy. More complex situations arise when hosts harbor multiple infections, which can lead to bidirectional incompatibility and may be involved in parasitoid speciation. The relative fitness of infected and uninfected hosts is important to the population dynamics of Wolbachia, and more data are needed. Evolutionary conflict should be common between host genes, Wolbachia genes, and other "selfish" genetic elements. Wolbachia-specific PCR primers are now available for several genes with different rates of evolution. These primers will permit rapid screening in future studies of spatial and temporal patterns of single and multiple infection. Molecular phylogenies show that CI- and PI-Wolbachia do not form discrete clades. In combination with experimental transfection data, this result suggests that host reproductive alterations depend on the interaction between attributes of both Wolbachia and host. Moreover, Wolbachia isolates from closely related hosts do not usually cluster together, and phylogenies suggest that Wolbachia may have radiated after their arthropod hosts. Both results support considerable horizontal transmission of Wolbachia between host species over evolutionary time. Natural horizontal transmisson between parasitoids and their hosts, or with entomoparasitic nematodes or ectoparasitic mites, remains a tantalizing but equivocal possibility. Received: November 27, 1998 / Accepted: January 15, 1999  相似文献   

15.
Summary Until now, mathematical models of parasitoid-host interactions have not incorporated the tendency for destructively host-feeding parasitoids to partition their feeding and oviposition behaviour in relation to different host stages. A literature survey reveals a trend for female parasitoids to feed preferentially or exclusively on earlier host stages and to oviposit preferentially or exclusively in/or later ones. We explore the relative advantages to host-feeding parasitoids of a number of possible host stage selection strategies. We develop hypotheses, formalizing and testing them using modifications to our earlier simulation model of host-feeding strategies (Jervis and Kidd, 1986). We conclude from our modelling that the advantage to be gained from feeding on early host stages and ovipositing in late ones is likely to be associated with: 1) reduced handling times when feeding on early stage hosts; 2) reduced wastage of progeny from mortality factors other than host-feeding by the parent parasitoid, achieved by confining oviposition to late host stages; and 3) reduced probability of progeny mortality resulting from the parent's host-feeding activities.  相似文献   

16.
Summary We studied the rules used by the female parasitoid,Dacnusa sibirica Telenga (Hymenoptera: Braconidae), for deciding when to leave a tomato leaflet on which she is searching for larvae of the leafminer,Liriomyza bryoniae Kalt. (Diptera: Agromyzidae). Females would deposit a marking pheromone on the leaflet and would leave the leaflet when the amount of the pheromone accumulated to the thresholdL, which is proportional to the amount of search effort on the leaflet.L appears to increase with host density since it rises after every encounter with a host (or mine).D. sibirica would employ an area-concentrated search, which is advantageous in foraging for hosts showing a clumped distribution.  相似文献   

17.
Indirect interactions between populations of different species can be important in structuring natural communities. Indirect effects are either mediated by changes in population densities (trophic or density-mediated effects) or by changes in the behavior of species that are not trophically connected (behavioral or trait-mediated effects). We reviewed the literature on aphids and their parasitoids to explore the various possible indirect interactions that can occur in such communities. The review was motivated by our study of a particular aphid–parasitoid community in a natural (i.e., nonagricultural) habitat, and by the wealth of information that exists about aphid–parasitoid systems in agricultural settings. We focused our review on aphid–parasitoid interactions, but considered how these were influenced by the other aphid natural enemies and also by aphid mutualists and host plants. We conclude that indirect effects are likely to have a major effect in structuring aphid–parasitoid communities, and that the latter are a valuable model system for testing ideas about community interactions. Received: December 20, 1998 / Accepted: January 12, 1999  相似文献   

18.
Human Carrying Capacity Is Determined by Food Availability   总被引:4,自引:0,他引:4  
Simple mathematical models have illustrated the relationship between human carrying capacity and population growth. In this study, food supply is proposed as the variable which best accounts for the human carrying capacity. The logistic equation, using food supply data as a variable carrying capacity, yields population estimates which are in accord with actual population numbers. That food supply data adequately fits the logistic model of human population dynamics provides evidence that, consistent with ecological notions typically applied only to nonhuman species, human population increases are a function of increased food availability.  相似文献   

19.
Summary Dispersions and resource utilization of primary and secondary parasitoids developing in non-depletable primary host populations were determined for an aphid-parasitoid community occurring on strawberries. Analyses of dispersions based onGreen's coefficient andLloyd's Patchiness Index indicated parasitized aphids were highly aggregated initially, became less aggregated as density increased, and remained aggregated following collapse of the aphid populations. The “index of aggregation” values calculated usingTaylor's Power Law concurred with results from the other indices, and the similarity of the regression coefficients from both seasons suggests that the index of aggregation may be characteristic for communities as well as species. Analysis withIwao's regression of mean crowding on the mean generated similar results when population data were stratified temporally, and also indicated that the individual was the basic unit of the population. In a non-depletable environment, oviposition of individuals exhibiting an aggregated dispersion pattern within clumps of hosts provides primary parasitoids with a suitable trade-off between energy utilization or genetic potential, and losses associated with hyperparasitism.  相似文献   

20.
Summary A differential equations model of competing species with the release of sterile individuals of one of the species is examined. The system is found to have two positive steady states for certain parameter values; one of these is stable and the other is unstable. The system is quite resilient around the stable steady state. The release of steriles causes the nontarget species to increase in numbers. There exists a value of the release rate above which the pest species collapses to extinction. The existence of the competitor species assists the sterile release program since the pest equilibrium at any release rate is lower with the competitor species present than without it; in addition the release rate required to cause collapse of the pest species is lower with the competitor species present than without it. The effects of the parameters on the ease of eradication were examined. It was found that the ideal competitor species should have a high rate of increase, a large carrying capacity and exert strong competitive depression on the pests. The ideal pest would have a low rate of increase, a low carrying capacity and be a poor competitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号