首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we introduce and study two new families of statistics for the problem of testing linear combinations of the parameters in logistic regression models. These families are based on the phi-divergence measures. One of them includes the classical likelihood ratio statistic and the other the classical Pearson's statistic for this problem. It is interesting to note that the vector of unknown parameters, in the two new families of phi-divergence statistics considered in this paper, is estimated using the minimum phi-divergence estimator instead of the maximum likelihood estimator. Minimum phi-divergence estimators are a natural extension of the maximum likelihood estimator.  相似文献   

2.
For the model of independence in a two way contingency table, shrinkage estimators based on minimum φφ-divergence estimators and φφ-divergence statistics are considered. These estimators are based on the James–Stein-type rule and incorporate the idea of preliminary test estimator. The asymptotic bias and risk are obtained under contiguous alternative hypotheses, and on the basis of them a comparison study is carried out.  相似文献   

3.
A general class of minimum distance estimators for logistic regression models based on the ϕ-divergence measures is introduced: The minimum ϕ-divergence estimator, which is seen to be a generalization of the maximum likelihood estimator. Its asymptotic properties are studied as well as its behaviour in small samples throught a simulation study. This work was supported partially by Grant DGI (BMF2003-00892).  相似文献   

4.
This article discusses the preliminary test approach for the regression parameter in multiple regression model. The preliminary test Liu-type estimators based on the Wald (W), Likelihood ratio (LR), and Lagrangian multiplier(LM) tests are presented, when it is supposed that the regression parameter may be restricted to a subspace. We also give the bias and mean squared error of the proposed estimators and the superior of the proposed estimators is also discussed.  相似文献   

5.
In this paper, we study the properties of the preliminary test, restricted and unrestricted ridge regression estimators of the linear regression model with non-normal disturbances. We present the estimators of the regression coefficients combining the idea of preliminary test and ridge regression methodology, when it is suspected that the regression coefficients may be restricted to a subspace and the regression error is distributed as multivariate t. Accordingly we consider three estimators, namely the Unrestricted Ridge Regression Estimator (URRRE), the Restricted Ridge Regression Estimator (RRRE) and finally the Preliminary test Ridge Regression Estimator (PTRRE). The biases and the mean square error (MSE) of the estimators are derived under the null and alternative hypotheses and compared with the usual estimators. By studying the MSE criterion, the regions of optimahty of the estimators are determined.  相似文献   

6.
For the linear regression model y=Xβ+e with severe multicollinearity, we put forward three shrinkage-type estimators based on the ordinary least-squares estimator including two types of independent factor estimators and a seemingly convex combination. The simulation study shows that the new estimators are not good enough when multicollinearity is mild to moderate, but perform very well when multicollinearity is severe to very severe.  相似文献   

7.
In this paper, the notion of the improved ridge estimator (IRE) is put forward in the linear regression model y=X β+e. The problem arises if augmenting the equation 0=cα+ε instead of 0=C α+? to the model. Three special IREs are considered and studied under the mean-squared error criterion and the prediction error sum of squares criterion. The simulations demonstrate that the proposed estimators are effective and recommendable, especially when multicollinearity is severe.  相似文献   

8.
ABSTRACT

In this paper, we consider the best linear unbiased estimators (BLUEs) based on double ranked set sampling (DRSS) and ordered DRSS (ODRSS) schemes for the simple linear regression model with replicated observations. We assume three symmetric distributions for the random error term, i.e., normal, Laplace and some scale contaminated normal distributions. The proposed BLUEs under DRSS (BLUEs-DRSS) and ODRSS (BLUEs-ODRSS) are compared with the BLUEs based on ordered simple random sampling (OSRS), ranked set sampling (RSS), and ordered RSS (ORSS) schemes. These estimators are compared in terms of relative efficiency (RE), RE of determinant (RED), and RE of trace (RET). It is found that the BLUEs-ODRSS are uniformly better than the BLUEs based on OSRS, RSS, ORSS, and DRSS schemes. We also compare the estimators based on imperfect RSS (IRSS) schemes. It is worth mentioning here that the BLUEs under ordered imperfect DRSS (OIDRSS) are better than their counterparts based on IRSS, ordered IRSS (OIRSS), and imperfect DRSS (IDRSS) methods. Moreover, for sensitivity analysis of the BLUEs, we calculate REs and REDs of the BLUEs under the assumption of normality when in fact the parent distribution follows a non normal symmetric distribution. It turns out that even under violation of normality assumptions, BLUEs of the intercept and the slope parameters are found to be unbiased with equal REs under each sampling scheme. It is also observed that the BLUEs under ODRSS are more efficient than the existing BLUEs.  相似文献   

9.
In this paper, the notion of the general linear estimator and its modified version are introduced using the singular value decomposition theorem in the linear regression model y=X β+e to improve some classical linear estimators. The optimal selections of the biasing parameters involved are theoretically given under the prediction error sum of squares criterion. A numerical example and a simulation study are finally conducted to illustrate the superiority of the proposed estimators.  相似文献   

10.
The minimum-dispersion linear unbiased estimator of a set of estimable functions in a general Gauss-Markov model with double linear restrictions is considered. The attention is focused on developing a recursive formula in which an initial estimator, obtained from the unrestricted model, is corrected with respect to the restrictions successively incorporated into the model. The established formula generalizes known results developed for the simple Gauss-Markov model.  相似文献   

11.
ABSTRACT

In this paper, we propose three generalized estimators, namely, generalized unrestricted estimator (GURE), generalized stochastic restricted estimator (GSRE), and generalized preliminary test stochastic restricted estimator (GPTSRE). The GURE can be used to represent the ridge estimator, almost unbiased ridge estimator (AURE), Liu estimator, and almost unbiased Liu estimator. When stochastic restrictions are available in addition to the sample information, the GSRE can be used to represent stochastic mixed ridge estimator, stochastic restricted Liu estimator, stochastic restricted almost unbiased ridge estimator, and stochastic restricted almost unbiased Liu estimator. The GPTSRE can be used to represent the preliminary test estimators based on mixed estimator. Using the GPTSRE, the properties of three other preliminary test estimators, namely preliminary test stochastic mixed ridge estimator, preliminary test stochastic restricted almost unbiased Liu estimator, and preliminary test stochastic restricted almost unbiased ridge estimator can also be discussed. The mean square error matrix criterion is used to obtain the superiority conditions to compare the estimators based on GPTSRE with some biased estimators for the two cases for which the stochastic restrictions are correct, and are not correct. Finally, a numerical example and a Monte Carlo simulation study are done to illustrate the theoretical findings of the proposed estimators.  相似文献   

12.
As an alternative to an estimation based on a simple random sample (BLUE-SRS) for the simple linear regression model, Moussa-Hamouda and Leone [E. Moussa-Hamouda and F.C. Leone, The o-blue estimators for complete and censored samples in linear regression, Technometrics, 16 (3) (1974), pp. 441–446.] discussed the best linear unbiased estimators based on order statistics (BLUE-OS), and showed that BLUE-OS is more efficient than BLUE-SRS for normal data. Using the ranked set sampling, Barreto and Barnett [M.C.M. Barreto and V. Barnett, Best linear unbiased estimators for the simple linear regression model using ranked set sampling. Environ. Ecoll. Stat. 6 (1999), pp. 119–133.] derived the best linear unbiased estimators (BLUE-RSS) for simple linear regression model and showed that BLUE-RSS is more efficient for the estimation of the regression parameters (intercept and slope) than BLUE-SRS for normal data, but not so for the estimation of the residual standard deviation in the case of small sample size. As an alternative to RSS, this paper considers the best linear unbiased estimators based on order statistics from a ranked set sample (BLUE-ORSS) and shows that BLUE-ORSS is uniformly more efficient than BLUE-RSS and BLUE-OS for normal data.  相似文献   

13.
Abstract

In this article, we propose a new improved and efficient biased estimation method which is a modified restricted Liu-type estimator satisfying some sub-space linear restrictions in the binary logistic regression model. We study the properties of the new estimator under the mean squared error matrix criterion and our results show that under certain conditions the new estimator is superior to some other estimators. Moreover, a Monte Carlo simulation study is conducted to show the performance of the new estimator in the simulated mean squared error and predictive median squared errors sense. Finally, a real application is considered.  相似文献   

14.
In this paper we study polytomous logistic regression model and the asymptotic properties of the minimum ϕ-divergence estimators for this model. A simulation study is conducted to analyze the behavior of these estimators as function of the power-divergence measure ϕ(λ) Research partially done when was visiting the Bowling Green State University as the Distinguished Lukacs Professor  相似文献   

15.
The present paper considers the weighted mixed regression estimation of the coefficient vector in a linear regression model with stochastic linear restrictions binding the regression coefficients. We introduce a new two-parameter-weighted mixed estimator (TPWME) by unifying the weighted mixed estimator of Schaffrin and Toutenburg [1] and the two-parameter estimator (TPE) of Özkale and Kaç?ranlar [2]. This new estimator is a general estimator which includes the weighted mixed estimator, the TPE and the restricted two-parameter estimator (RTPE) proposed by Özkale and Kaç?ranlar [2] as special cases. Furthermore, we compare the TPWME with the weighted mixed estimator and the TPE with respect to the matrix mean square error criterion. A numerical example and a Monte Carlo simulation experiment are presented by using different estimators of the biasing parameters to illustrate some of the theoretical results.  相似文献   

16.
A semiparametric logistic regression model is proposed in which its nonparametric component is approximated with fixed-knot cubic B-splines. To assess the linearity of the nonparametric component, we construct a penalized likelihood ratio test statistic. When the number of knots is fixed, the null distribution of the test statistic is shown to be asymptotically the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. We set the asymptotic null expectation of this test statistic equal to a value to determine the smoothing parameter value. Monte Carlo experiments are conducted to investigate the performance of the proposed test. Its practical use is illustrated with a real-life example.  相似文献   

17.
In this paper a new robust estimator, modified median estimator, is introduced and studied for the logistic regression model. This estimator is based on the median estimator considered in Hobza et al. [Robust median estimator in logistic regression. J Stat Plan Inference. 2008;138:3822–3840]. Its asymptotic distribution is obtained. Using the modified median estimator, we also consider a Wald-type test statistic for testing linear hypotheses in the logistic regression model and we obtain its asymptotic distribution under the assumption of random regressors. An extensive simulation study is presented in order to analyse the efficiency as well as the robustness of the modified median estimator and Wald-type test based on it.  相似文献   

18.
In this paper, assuming that there exist omitted explanatory variables in the specified model, we derive the exact formula for the mean squared error (MSE) of a general family of shrinkage estimators for each individual regression coefficient. It is shown analytically that when our concern is to estimate each individual regression coefficient, the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators under some conditions even when the relevant regressors are omitted. Also, by numerical evaluations, we showed the effects of our theorem for several specific cases. It is shown that the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators for wide region of parameter space even when there exist omitted variables in the specified model.  相似文献   

19.
This paper is mainly concerned with minimax estimation in the general linear regression model y=Xβ+εy=Xβ+ε under ellipsoidal restrictions on the parameter space and quadratic loss function. We confine ourselves to estimators that are linear in the response vector y  . The minimax estimators of the regression coefficient ββ are derived under homogeneous condition and heterogeneous condition, respectively. Furthermore, these obtained estimators are the ridge-type estimators and mean dispersion error (MDE) superior to the best linear unbiased estimator b=(XW-1X)-1XW-1yb=(XW-1X)-1XW-1y under some conditions.  相似文献   

20.
This paper considered the estimation of the regression parameters of a general probit regression model. Accordingly, we proposed five ridge regression (RR) estimators for the probit regression models for estimating the parameters (β)(β) when the weighted design matrix is ill-conditioned and it is suspected that the parameter ββ may belong to a linear subspace defined by Hβ=hHβ=h. Asymptotic properties of the estimators are studied with respect to quadratic biases, MSE matrices and quadratic risks. The regions of optimality of the proposed estimators are determined based on the quadratic risks. Some relative efficiency tables and risk graphs are provided to illustrate the numerical comparison of the estimators. We conclude that when q≥3q3, one would uses PRRRE; otherwise one uses PTRRE with some optimum size αα. We also discuss the performance of the proposed estimators compare to the alternative ridge regression method due to Liu (1993).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号