首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Generalized exponential distributions   总被引:8,自引:0,他引:8  
The three-parameter gamma and three-parameter Weibull distributions are commonly used for analysing any lifetime data or skewed data. Both distributions have several desirable properties, and nice physical interpretations. Because of the scale and shape parameters, both have quite a bit of flexibility for analysing different types of lifetime data. They have increasing as well as decreasing hazard rate depending on the shape parameter. Unfortunately both distributions also have certain drawbacks. This paper considers a three-parameter distribution which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar, Srivastava & Freimer (1995) when the location parameter is not present. The study examines different properties of this model and observes that this family has some interesting features which are quite similar to those of the gamma family and the Weibull family, and certain distinct properties also. It appears this model can be used as an alternative to the gamma model or the Weibull model in many situations. One dataset is provided where the three-parameter generalized exponential distribution fits better than the three-parameter Weibull distribution or the three-parameter gamma distribution.  相似文献   

2.
SUMMARY Using San Francisco city clinic cohort data, we estimate the HIV seroconversion distribution by both non-parametric and parametric methods, and illustrate the effects of age on this distribution. The non-parametric methods include the Turnbull method, the Bacchetti method, the expectation, maximization and smoothing (EMS) method and the penalized spline method. The seroconversion density curves estimated by these nonparametric methods are of bimodal nature with obvious effects of age. As a result of the bimodal nature of the seroconversion curves, the parametric models considered are mixtures of two distributions taken from the generalized log-logistic distribution with three parameters, the Weibull distribution and the log-normal distribution. In terms of the logarithm of the likelihood values, it appears that the non-parametric methods with smoothing as well as without smoothing (i.e. the Turnbull method) provided much better fits than did the parametric models. Among the non-parametric methods, the EMS and the spline estimates are more appealing, because the unsmoothed Turnbull estimates are very unstable and because the Bacchetti estimates have a longer tail. Among the parametric models, the mixture of a generalized log-logistic distribution with three parameters and a Weibull distribution or a log-normal distribution provided better fits than did other mixtures of parametric models.  相似文献   

3.
ABSTRACT

In this paper, we propose a new probability model called the log-EIG distribution for lifetime data analysis. Some important properties of the proposed model and maximum likelihood estimation of its parameters are discussed. Its relationship with the exponential inverse Gaussian distribution is similar to that of the lognormal and the normal distributions. Through applications to well-known datasets, we show that the log-EIG distribution competes well, and in some instances even provides a better fit than the commonly used lifetime models such as the gamma, lognormal, Weibull and inverse Gaussian distributions. It can accommodate situations where an increasing failure rate model is required as well as those with a decreasing failure rate at larger times.  相似文献   

4.
A robust Bayesian design is presented for a single-arm phase II trial with an early stopping rule to monitor a time to event endpoint. The assumed model is a piecewise exponential distribution with non-informative gamma priors on the hazard parameters in subintervals of a fixed follow up interval. As an additional comparator, we also define and evaluate a version of the design based on an assumed Weibull distribution. Except for the assumed models, the piecewise exponential and Weibull model based designs are identical to an established design that assumes an exponential event time distribution with an inverse gamma prior on the mean event time. The three designs are compared by simulation under several log-logistic and Weibull distributions having different shape parameters, and for different monitoring schedules. The simulations show that, compared to the exponential inverse gamma model based design, the piecewise exponential design has substantially better performance, with much higher probabilities of correctly stopping the trial early, and shorter and less variable trial duration, when the assumed median event time is unacceptably low. Compared to the Weibull model based design, the piecewise exponential design does a much better job of maintaining small incorrect stopping probabilities in cases where the true median survival time is desirably large.  相似文献   

5.
The Weibull, log-logistic and log-normal distributions are extensively used to model time-to-event data. The Weibull family accommodates only monotone hazard rates, whereas the log-logistic and log-normal are widely used to model unimodal hazard functions. The increasing availability of lifetime data with a wide range of characteristics motivate us to develop more flexible models that accommodate both monotone and nonmonotone hazard functions. One such model is the exponentiated Weibull distribution which not only accommodates monotone hazard functions but also allows for unimodal and bathtub shape hazard rates. This distribution has demonstrated considerable potential in univariate analysis of time-to-event data. However, the primary focus of many studies is rather on understanding the relationship between the time to the occurrence of an event and one or more covariates. This leads to a consideration of regression models that can be formulated in different ways in survival analysis. One such strategy involves formulating models for the accelerated failure time family of distributions. The most commonly used distributions serving this purpose are the Weibull, log-logistic and log-normal distributions. In this study, we show that the exponentiated Weibull distribution is closed under the accelerated failure time family. We then formulate a regression model based on the exponentiated Weibull distribution, and develop large sample theory for statistical inference. We also describe a Bayesian approach for inference. Two comparative studies based on real and simulated data sets reveal that the exponentiated Weibull regression can be valuable in adequately describing different types of time-to-event data.  相似文献   

6.
For the first time, a new five-parameter distribution, called the beta generalized gamma distribution, is introduced and studied. It contains at least 25 special sub-models such as the beta gamma, beta Weibull, beta exponential, generalized gamma (GG), Weibull and gamma distributions and thus could be a better model for analysing positive skewed data. The new density function can be expressed as a linear combination of GG densities. We derive explicit expressions for moments, generating function and other statistical measures. The elements of the expected information matrix are provided. The usefulness of the new model is illustrated by means of a real data set.  相似文献   

7.
A new approach, is proposed for maximum likelihood (ML) estimation in continuous univariate distributions. The procedure is used primarily to complement the ML method which can fail in situations such as the gamma and Weibull distributions when the shape parameter is, at most, unity. The new approach provides consistent and efficient estimates for all possible values of the shape parameter. Its performance is examined via simulations. Two other, improved, general methods of ML are reported for comparative purposes. The methods are used to estimate the gamma and Weibull distributions using air pollution data from Melbourne. The new ML method is accurate when the shape parameter is less than unity and is also superior to the maximum product of spacings estimation method for the Weibull distribution.  相似文献   

8.
For the first time, we propose a five-parameter lifetime model called the McDonald Weibull distribution to extend the Weibull, exponentiated Weibull, beta Weibull and Kumaraswamy Weibull distributions, among several other models. We obtain explicit expressions for the ordinary moments, quantile and generating functions, mean deviations and moments of the order statistics. We use the method of maximum likelihood to fit the new distribution and determine the observed information matrix. We define the log-McDonald Weibull regression model for censored data. The potentiality of the new model is illustrated by means of two real data sets.  相似文献   

9.
Traditionally, the moments of the Weibull distribution have been calculated using the standard Weibull (Johnson and Kotz, 1970) . This article will expand on that idea and cover the truncated cases for the standard Weibull distributions. Also, the same techniques used for the standard form will be used to derive the moment expressions for the three-parameter complete and truncated Weibull distributions. The summary statistics are then calculated from the moment expressions. Weibull moments involve the gamma and incomplete gamma functions.  相似文献   

10.
The median service lifetime of respirator safety devices produced by different manufacturers is determined using frailty models to account for unobserved differences in manufacturing processes and raw materials. The gamma and positive stable frailty distributions are used to obtain survival distribution estimates when the baseline hazard is assumed to be Weibull. Frailty distributions are compared using laboratory test data of the failure times for 104 respirator cartridges produced by 10 different manufacturers tested with three different challenge agents. Likelihood ratio tests indicate that both frailty models provide a significant improvement over a Weibull model assuming independence. Results are compared to fixed effects approaches for analysis of this data.  相似文献   

11.
A generalization of the exponential distribution is presented. The generalization always has its mode at zero and yet allows for increasing, decreasing and constant hazard rates. It can be used as an alternative to the gamma, Weibull and exponentiated exponential distributions. A comprehensive account of the mathematical properties of the generalization is presented. A real data example is discussed to illustrate its applicability.  相似文献   

12.
A simple adjustment to parametric failure-time distributions, which allows for much greater flexibility in the shape of the hazard-rate function, is considered. Analytical expressions for the distributions of the power-law adjusted Weibull, gamma, log-gamma, generalized gamma, lognormal, and Pareto distributions are given. Most of these allow for bathtub-shaped and other multi-modal forms of the hazard rate. The new distributions are fitted to real failure-time data which exhibit a multi-modal hazard-rate function and the fits are compared.  相似文献   

13.
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79–88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix ‘Kw’) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.  相似文献   

14.
Mudholkar and Srivastava [1993. Exponentiated Weibull family for analyzing bathtub failure data. IEEE Trans. Reliability 42, 299–302] introduced three-parameter exponentiated Weibull distribution. Two-parameter exponentiated exponential or generalized exponential distribution is a particular member of the exponentiated Weibull distribution. Generalized exponential distribution has a right skewed unimodal density function and monotone hazard function similar to the density functions and hazard functions of the gamma and Weibull distributions. It is observed that it can be used quite effectively to analyze lifetime data in place of gamma, Weibull and log-normal distributions. The genesis of this model, several properties, different estimation procedures and their properties, estimation of the stress-strength parameter, closeness of this distribution to some of the well-known distribution functions are discussed in this article.  相似文献   

15.
The odd Weibull distribution is a three-parameter generalization of the Weibull and the inverse Weibull distributions having rich density and hazard shapes for modeling lifetime data. This paper explored the odd Weibull parameter regions having finite moments and examined the relation to some well-known distributions based on skewness and kurtosis functions. The existence of maximum likelihood estimators have shown with complete data for any sample size. The proof for the uniqueness of these estimators is given only when the absolute value of the second shape parameter is between zero and one. Furthermore, elements of the Fisher information matrix are obtained based on complete data using a single integral representation which have shown to exist for any parameter values. The performance of the odd Weibull distribution over various density and hazard shapes is compared with generalized gamma distribution using two different test statistics. Finally, analysis of two data sets has been performed for illustrative purposes.  相似文献   

16.
A class of bivariate continuous-discrete distributions is proposed to fit Poisson dynamic models in a single unified framework via bivariate mixture transition distributions (BMTDs). Potential advantages of this class over the current models include its ability to capture stretches, bursts and nonlinear patterns characterized by Internet network traffic, high-frequency financial data and many others. It models the inter-arrival times and the number of arrivals (marks) in a single unified model which benefits from the dependence structure of the data. The continuous marginal distributions of this class include as special cases the exponential, gamma, Weibull and Rayleigh distributions (for the inter-arrival times), whereas the discrete marginal distributions are geometric and negative binomial. The conditional distributions are Poisson and Erlang. Maximum-likelihood estimation is discussed and parameter estimates are obtained using an expectation–maximization algorithm, while the standard errors are estimated using the missing information principle. It is shown via real data examples that the proposed BMTD models appear to capture data features better than other competing models.  相似文献   

17.
Introducing a shape parameter to an exponential model is nothing new. There are many ways to introduce a shape parameter to an exponential distribution. The different methods may result in variety of weighted exponential (WE) distributions. In this article, we have introduced a shape parameter to an exponential model using the idea of Azzalini, which results in a new class of WE distributions. This new WE model has the probability density function (PDF) whose shape is very close to the shape of the PDFS of Weibull, gamma or generalized exponential distributions. Therefore, this model can be used as an alternative to any of these distributions. It is observed that this model can also be obtained as a hidden truncation model. Different properties of this new model have been discussed and compared with the corresponding properties of well-known distributions. Two data sets have been analysed for illustrative purposes and it is observed that in both the cases it fits better than Weibull, gamma or generalized exponential distributions.  相似文献   

18.
In this paper, we propose a multiple deferred state repetitive group sampling plan which is a new sampling plan developed by incorporating the features of both multiple deferred state sampling plan and repetitive group sampling plan, for assuring Weibull or gamma distributed mean life of the products. The quality of the product is represented by the ratio of true mean life and specified mean life of the products. Two points on the operating characteristic curve approach is used to determine the optimal parameters of the proposed plan. The plan parameters are determined by formulating an optimization problem for various combinations of producer's risk and consumer's risk for both distributions. The sensitivity analysis of the proposed plan is discussed. The implementation of the proposed plan is explained using real-life data and simulated data. The proposed plan under Weibull distribution is compared with the existing sampling plans. The average sample number (ASN) of the proposed plan and failure probability of the product are obtained under Weibull, gamma and Birnbaum–Saunders distributions for a specified value of shape parameter and compared with each other. In addition, a comparative study is made between the ASN of the proposed plan under Weibull and gamma distributions.  相似文献   

19.
We propose frailty regression models in mixture distributions and assume the distribution of frailty as gamma or positive stable or power variance function distribution. We consider Weibull mixture as an example. There are some interesting situations like survival times in genetic epidemiology, dental implants of patients and twin births (both monozygotic and dizygotic) where genetic behavior (which is unknown and random) of patients follows a known frailty distribution. These are the situations which motivate to study this particular model.  相似文献   

20.
The generalized gamma distribution is a flexible and attractive distribution because it incorporates several well-known distributions, i.e., gamma, Weibull, Rayleigh, and Maxwell. This article derives saddlepoint density and distribution functions for the ratio of two linear functions of generalized gamma variables and the product of n independent generalized gamma variables. Simulation studies are used to evaluate the accuracy of the saddlepoint approximations. The saddlepoint approximations are fast, easy, and very accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号