首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model for directional data in q dimensions is studied. The data are assumed to arise from a distribution with a density on a sphere of q — 1 dimensions. The density is unimodal and rotationally symmetric, but otherwise of unknown form. The posterior distribution of the unknown mode (mean direction) is derived, and small-sample posterior inference is discussed. The posterior mean of the density is also given. A numerical method for evaluating posterior quantities based on sampling a Markov chain is introduced. This method is generally applicable to problems involving unknown monotone functions.  相似文献   

2.
Models and algorithms are presented for the stratigraphic analysis of earth core samples collected at archaeological sites. The aim is to separate the occupation of the site into distinct periods, by dividing the earth core into well-defined blocks of uniform magnetic susceptibility. The models describe the response of detector equipment by using both a spread function and an error process, and they incorporate prior beliefs regarding the nature of the true susceptibility values. The prior parameters are estimated by using pseudolikelihood and the susceptibilities by maximum a posteriori methods via the one-step-late algorithm. These procedures are illustrated with data from synthetic and real core specimens. The new procedures prove to be far superior to other approaches, producing reconstructions which clearly show distinct periods of uniform magnetic susceptibility separated by sharp discontinuities.  相似文献   

3.
Empirical Bayes methods are used to estimate the extent of the undercount at the local level in the 1980 U.S. census. "Grouping of like subareas from areas such as states, counties, and so on into strata is a useful way of reducing the variance of undercount estimators. By modeling the subareas within a stratum to have a common mean and variances inversely proportional to their census counts, and by taking into account sampling of the areas (e.g., by dual-system estimation), empirical Bayes estimators that compromise between the (weighted) stratum average and the sample value can be constructed. The amount of compromise is shown to depend on the relative importance of stratum variance to sampling variance. These estimators are evaluated at the state level (51 states, including Washington, D.C.) and stratified on race/ethnicity (3 strata) using data from the 1980 postenumeration survey (PEP 3-8, for the noninstitutional population)."  相似文献   

4.
In this article, we consider the Bayes and empirical Bayes problem of the current population mean of a finite population when the sample data is available from other similar (m-1) finite populations. We investigate a general class of linear estimators and obtain the optimal linear Bayes estimator of the finite population mean under a squared error loss function that considered the cost of sampling. The optimal linear Bayes estimator and the sample size are obtained as a function of the parameters of the prior distribution. The corresponding empirical Bayes estimates are obtained by replacing the unknown hyperparameters with their respective consistent estimates. A Monte Carlo study is conducted to evaluate the performance of the proposed empirical Bayes procedure.  相似文献   

5.
Bayesian methods have been extensively used in small area estimation. A linear model incorporating autocorrelated random effects and sampling errors was previously proposed in small area estimation using both cross-sectional and time-series data in the Bayesian paradigm. There are, however, many situations that we have time-related counts or proportions in small area estimation; for example, monthly dataset on the number of incidence in small areas. This article considers hierarchical Bayes generalized linear models for a unified analysis of both discrete and continuous data with incorporating cross-sectional and time-series data. The performance of the proposed approach is evaluated through several simulation studies and also by a real dataset.  相似文献   

6.
ABSTRACT

This paper is concerned with the problem of estimation for the mean of the selected population from two normal populations with unknown means and common known variance in a Bayesian framework. The empirical Bayes estimator, when there are available additional observations, is derived and its bias and risk function are computed. The expected bias and risk of the empirical Bayes estimator and the intuitive estimator are compared. It is shown that the empirical Bayes estimator is asymptotically optimal and especially dominates the intuitive estimator in terms of Bayes risk, with respect to any normal prior. Also, the Bayesian correlation between the mean of the selected population (random parameter) and some interested estimators are obtained and compared.  相似文献   

7.
In this paper, we study the empirical Bayes (EB) estimation in continuous one-parameter exponential families under negatively associated (NA) samples and positively associated (PA) samples. Under certain regularity conditions, it is shown that the convergence rates of proposed EB estimators under NA or PA samples are the same as those of EB estimators under independent observations, which significantly improve the existing results in EB estimation under associated samples.  相似文献   

8.
The Department of Health and Human Services uses estimates of the median income of four-person families for all the fifty states and the District of Columbia to formulate its energy assistance program for low income families. Such estimates are provided by the US Census Bureau on an annual basis.A hierarchical time series model is considered to combine information from three relevant sources: (a) Current Population Survey (CPS), (b) Decennial Censuses and (c) Bureau of Economic Analysis. An empirical Bayes (EB) method is used to smooth the CPS estimates of the median income of four-person families for the states. The proposed method is an advancement over the EB method currently used by the US Bureau of the Census in the sense that it uses a more realistic model, provides maximum likelihood and residual maximum likelihood method of variance components estimation and provides a valid measure of uncertainty of the proposed estimates which captures all different sources of variations. Compared to the corresponding hierarchical Bayes estimation, the method is very easy to implement and saves a tremendous amount of computer time. The proposed EB method is compared with rival estimators using the 1989 four-person median income figures obtained from the 1990 Census.  相似文献   

9.
An extension of the generalized linear mixed model was constructed to simultaneously accommodate overdispersion and hierarchies present in longitudinal or clustered data. This so‐called combined model includes conjugate random effects at observation level for overdispersion and normal random effects at subject level to handle correlation, respectively. A variety of data types can be handled in this way, using different members of the exponential family. Both maximum likelihood and Bayesian estimation for covariate effects and variance components were proposed. The focus of this paper is the development of an estimation procedure for the two sets of random effects. These are necessary when making predictions for future responses or their associated probabilities. Such (empirical) Bayes estimates will also be helpful in model diagnosis, both when checking the fit of the model as well as when investigating outlying observations. The proposed procedure is applied to three datasets of different outcome types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The paper considers simultaneous estimation of finite population means for several strata. A model-based approach is taken, where the covariates in the super-population model are subject to measurement errors. Empirical Bayes (EB) estimators of the strata means are developed and an asymptotic expression for the MSE of the EB estimators is provided. It is shown that the proposed EB estimators are “first order optimal” in the sense of Robbins [1956. An empirical Bayes approach to statistics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, University of California Press, Berkeley, pp. 157–164], while the regular EB estimators which ignore the measurement error are not.  相似文献   

11.
ABSTRACT

In the case of the random design nonparametric regression, the double smoothing technique is applied to estimate the multivariate regression function. The proposed estimator has desirable properties in both the finite sample and the asymptotic cases. In the finite sample case, it has bounded conditional (and unconditional) bias and variance. On the other hand, in the asymptotic case, it has the same mean square error as the local linear estimator in Fan (Design-Adaptive Nonparametric Regression. Journal of the American Statistical Association 1992, 87, 998–1004; Local Linear Regression Smoothers and Their Minimax Efficiencies. Annals of Statistics 1993, 21, 196–216). Simulation studies demonstrate that the proposed estimator is better than the local linear estimator, because it has a smaller sample mean integrated square error and gives smoother estimates.  相似文献   

12.
Nonparametric Bayes (NPB) estimation of the gap-time survivor function governing the time to occurrence of a recurrent event in the presence of censoring is considered. In our Bayesian approach, the gap-time distribution, denoted by F, has a Dirichlet process prior with parameter α. We derive NPB and nonparametric empirical Bayes (NPEB) estimators of the survivor function F?=1?F and construct point-wise credible intervals. The resulting Bayes estimator of F? extends that based on single-event right-censored data, and the PL-type estimator is a limiting case of this Bayes estimator. Through simulation studies, we demonstrate that the PL-type estimator has smaller biases but higher root-mean-squared errors (RMSEs) than those of the NPB and the NPEB estimators. Even in the case of a mis-specified prior measure parameter α, the NPB and the NPEB estimators have smaller RMSEs than the PL-type estimator, indicating robustness of the NPB and NPEB estimators. In addition, the NPB and NPEB estimators are smoother (in some sense) than the PL-type estimator.  相似文献   

13.
Small area estimation plays a prominent role in survey sampling due to a growing demand for reliable small area estimates from both public and private sectors. Popularity of model-based inference is increasing in survey sampling, particularly, in small area estimation. The estimates of the small area parameters can profitably ‘borrow strength’ from data on related multiple characteristics and/or auxiliary variables from other neighboring areas through appropriate models. Fay (1987, Small Area Statistics, Wiley, New York, pp. 91–102) proposed multivariate regression for small area estimation of multiple characteristics. The success of this modeling rests essentially on the strength of correlation of these dependent variables. To estimate small area mean vectors of multiple characteristics, multivariate modeling has been proposed in the literature via a multivariate variance components model. We use this approach to empirical best linear unbiased and empirical Bayes prediction of small area mean vectors. We use data from Battese et al. (1988, J. Amer. Statist. Assoc. 83, 28 –36) to conduct a simulation which shows that the multivariate approach may achieve substantial improvement over the usual univariate approach.  相似文献   

14.
A truncation bias affects the observation of a pair of variables (X,Y), so that data are available only if YX. In such a situation, the nonparametric maximum likelihood estimator (NPMLE) of the distribution function of Y may have unpleasant features (Woodroofe, Ann. Statist. 13 (1985) 163–177). As a possible alternative, a nonparametric Bayes estimator is obtained using a Dirichlet prior (Ferguson, Ann. Statist. 1 (1973) 209–230). Its frequentist asymptotic behavior is investigated and found to be the same as the asymptotic behavior of the NPMLE. The results are illustrated by an example, with astronomical data, where the NPMLE is clearly unacceptable.  相似文献   

15.
Empirical Bayes estimator for the transition probability matrix is worked out in the cases where we have belief regarding the parameters, For example, where the states seem to be equal or not. In both cases, priors are in accordance with our beliefs. Using EM algorithm, computational methods for different hyperparameters of the empirical Bayes are described. Also, robustness of empirical Bayes procedure is investigated.  相似文献   

16.
We propose a modification to the regular kernel density estimation method that use asymmetric kernels to circumvent the spill over problem for densities with positive support. First a pivoting method is introduced for placement of the data relative to the kernel function. This yields a strongly consistent density estimator that integrates to one for each fixed bandwidth in contrast to most density estimators based on asymmetric kernels proposed in the literature. Then a data-driven Bayesian local bandwidth selection method is presented and lognormal, gamma, Weibull and inverse Gaussian kernels are discussed as useful special cases. Simulation results and a real-data example illustrate the advantages of the new methodology.  相似文献   

17.
For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, CpCp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical Bayes variable selection. Biometrika 87(4), 731–747] to improve on these fixed selection criteria. In this paper, we study the potential of alternative fully Bayes methods, which instead margin out the hyperparameters with respect to prior distributions. Several structured prior formulations are considered for which fully Bayes selection and estimation methods are obtained. Analytical and simulation comparisons with empirical Bayes counterparts are studied.  相似文献   

18.
Consider a sequence of dependent random variables X1,X2,…,XnX1,X2,,Xn, where X1X1 has distribution F (or probability measure P  ), and the distribution of Xi+1Xi+1 given X1,…,XiX1,,Xi and other covariates and environmental factors depends on F   and the previous data, i=1,…,n-1i=1,,n-1. General repair models give rise to such random variables as the failure times of an item subject to repair. There exist nonparametric non-Bayes methods of estimating F in the literature, for instance, Whitaker and Samaniego [1989. Estimating the reliability of systems subject to imperfect repair. J. Amer. Statist. Assoc. 84, 301–309], Hollander et al. [1992. Nonparametric methods for imperfect repair models. Ann. Statist. 20, 879–896] and Dorado et al. [1997. Nonparametric estimation for a general repair model. Ann. Statist. 25, 1140–1160], etc. Typically these methods apply only to special repair models and also require repair data on N independent items until exactly only one item is left awaiting a “perfect repair”.  相似文献   

19.
A batch of M items is inspected for defectives. Suppose there are d defective items in the batch. Let d 0 be a given standard used to evaluate the quality of the population where 0 < d 0 < M. The problem of testing H 0: d < d 0 versus H 1: d ≥ d 0 is considered. It is assumed that past observations are available when the current testing problem is considered. Accordingly, the empirical Bayes approach is employed. By using information obtained from the past data, an empirical Bayes two-stage testing procedure is developed. The associated asymptotic optimality is investigated. It is proved that the rate of convergence of the empirical Bayes two-stage testing procedure is of order O (exp(? c? n)), for some constant c? > 0, where n is the number of past observations at hand.  相似文献   

20.
For a moderate or large number of regression coefficients, shrinkage estimates towards an overall mean are obtained by Bayes and empirical Bayes methods. For a special case, the Bayes and empirical Bayes shrinking weights are shown to be asymptotically equivalent as the amount of shrinkage goes to zero. Based on comparisons between Bayes and empirical Bayes solutions, a modification of the empirical Bayes shrinking weights designed to guard against unreasonable overshrinking is suggested. A numerical example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号