首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We extend the Bayesian Model Averaging (BMA) framework to dynamic panel data models with endogenous regressors using a Limited Information Bayesian Model Averaging (LIBMA) methodology. Monte Carlo simulations confirm the asymptotic performance of our methodology both in BMA and selection, with high posterior inclusion probabilities for all relevant regressors, and parameter estimates very close to their true values. In addition, we illustrate the use of LIBMA by estimating a dynamic gravity model for bilateral trade. Once model uncertainty, dynamics, and endogeneity are accounted for, we find several factors that are robustly correlated with bilateral trade. We also find that applying methodologies that do not account for either dynamics or endogeneity (or both) results in different sets of robust determinants.  相似文献   

2.
The late-2000s financial crisis stressed the need to understand the world financial system as a network of countries, where cross-border financial linkages play a fundamental role in the spread of systemic risks. Financial network models, which take into account the complex interrelationships between countries, seem to be an appropriate tool in this context. To improve the statistical performance of financial network models, we propose to generate them by means of multivariate graphical models. We then introduce Bayesian graphical models, which can take model uncertainty into account, and dynamic Bayesian graphical models, which provide a convenient framework to model temporal cross-border data, decomposing the model into autoregressive and contemporaneous networks. The article shows how the application of the proposed models to the Bank of International Settlements locational banking statistics allows the identification of four distinct groups of countries, that can be considered central in systemic risk contagion.  相似文献   

3.
Summary.  When modelling multivariate financial data, the problem of structural learning is compounded by the fact that the covariance structure changes with time. Previous work has focused on modelling those changes by using multivariate stochastic volatility models. We present an alternative to these models that focuses instead on the latent graphical structure that is related to the precision matrix. We develop a graphical model for sequences of Gaussian random vectors when changes in the underlying graph occur at random times, and a new block of data is created with the addition or deletion of an edge. We show how a Bayesian hierarchical model incorporates both the uncertainty about that graph and the time variation thereof.  相似文献   

4.
The graphical lasso has now become a useful tool to estimate high-dimensional Gaussian graphical models, but its practical applications suffer from the problem of choosing regularization parameters in a data-dependent way. In this article, we propose a model-averaged method for estimating sparse inverse covariance matrices for Gaussian graphical models. We consider the graphical lasso regularization path as the model space for Bayesian model averaging and use Markov chain Monte Carlo techniques for the regularization path point selection. Numerical performance of our method is investigated using both simulated and real datasets, in comparison with some state-of-art model selection procedures.  相似文献   

5.
A popular account for the demise of the U.K.’s monetary targeting regime in the 1980s blames the fluctuating predictive relationships between broad money and inflation and real output growth. Yet ex post policy analysis based on heavily revised data suggests no fluctuations in the predictive content of money. In this paper, we investigate the predictive relationships for inflation and output growth using both real-time and heavily revised data. We consider a large set of recursively estimated vector autoregressive (VAR) and vector error correction models (VECM). These models differ in terms of lag length and the number of cointegrating relationships. We use Bayesian model averaging (BMA) to demonstrate that real-time monetary policymakers faced considerable model uncertainty. The in-sample predictive content of money fluctuated during the 1980s as a result of data revisions in the presence of model uncertainty. This feature is only apparent with real-time data as heavily revised data obscure these fluctuations. Out-of-sample predictive evaluations rarely suggest that money matters for either inflation or real output. We conclude that both data revisions and model uncertainty contributed to the demise of the U.K.’s monetary targeting regime.  相似文献   

6.
We present a Bayesian analysis framework for matrix-variate normal data with dependency structures induced by rows and columns. This framework of matrix normal models includes prior specifications, posterior computation using Markov chain Monte Carlo methods, evaluation of prediction uncertainty, model structure search, and extensions to multidimensional arrays. Compared with Bayesian probabilistic matrix factorization, which integrates a Gaussian prior for single row of the data matrix, our proposed model, namely Bayesian hierarchical kernelized probabilistic matrix factorization, imposes Gaussian Process priors over multiple rows of the matrix. Hence, the learned model explicitly captures the underlying correlation among the rows and the columns. In addition, our method requires no specific assumptions like independence of latent factors for rows and columns, which obtains more flexibility for modeling real data compared to existing works. Finally, the proposed framework can be adapted to a wide range of applications, including multivariate analysis, times series, and spatial modeling. Experiments highlight the superiority of the proposed model in handling model uncertainty and model optimization.  相似文献   

7.
Most existing reduced-form macroeconomic multivariate time series models employ elliptical disturbances, so that the forecast densities produced are symmetric. In this article, we use a copula model with asymmetric margins to produce forecast densities with the scope for severe departures from symmetry. Empirical and skew t distributions are employed for the margins, and a high-dimensional Gaussian copula is used to jointly capture cross-sectional and (multivariate) serial dependence. The copula parameter matrix is given by the correlation matrix of a latent stationary and Markov vector autoregression (VAR). We show that the likelihood can be evaluated efficiently using the unique partial correlations, and estimate the copula using Bayesian methods. We examine the forecasting performance of the model for four U.S. macroeconomic variables between 1975:Q1 and 2011:Q2 using quarterly real-time data. We find that the point and density forecasts from the copula model are competitive with those from a Bayesian VAR. During the recent recession the forecast densities exhibit substantial asymmetry, avoiding some of the pitfalls of the symmetric forecast densities from the Bayesian VAR. We show that the asymmetries in the predictive distributions of GDP growth and inflation are similar to those found in the probabilistic forecasts from the Survey of Professional Forecasters. Last, we find that unlike the linear VAR model, our fitted Gaussian copula models exhibit nonlinear dependencies between some macroeconomic variables. This article has online supplementary material.  相似文献   

8.
Gaussian graphical models represent the backbone of the statistical toolbox for analyzing continuous multivariate systems. However, due to the intrinsic properties of the multivariate normal distribution, use of this model family may hide certain forms of context-specific independence that are natural to consider from an applied perspective. Such independencies have been earlier introduced to generalize discrete graphical models and Bayesian networks into more flexible model families. Here, we adapt the idea of context-specific independence to Gaussian graphical models by introducing a stratification of the Euclidean space such that a conditional independence may hold in certain segments but be absent elsewhere. It is shown that the stratified models define a curved exponential family, which retains considerable tractability for parameter estimation and model selection.  相似文献   

9.
This paper considers a hierarchical Bayesian analysis of regression models using a class of Gaussian scale mixtures. This class provides a robust alternative to the common use of the Gaussian distribution as a prior distribution in particular for estimating the regression function subject to uncertainty about the constraint. For this purpose, we use a family of rectangular screened multivariate scale mixtures of Gaussian distribution as a prior for the regression function, which is flexible enough to reflect the degrees of uncertainty about the functional constraint. Specifically, we propose a hierarchical Bayesian regression model for the constrained regression function with uncertainty on the basis of three stages of a prior hierarchy with Gaussian scale mixtures, referred to as a hierarchical screened scale mixture of Gaussian regression models (HSMGRM). We describe distributional properties of HSMGRM and an efficient Markov chain Monte Carlo algorithm for posterior inference, and apply the proposed model to real applications with constrained regression models subject to uncertainty.  相似文献   

10.
Abstract

Covariance estimation and selection for multivariate datasets in a high-dimensional regime is a fundamental problem in modern statistics. Gaussian graphical models are a popular class of models used for this purpose. Current Bayesian methods for inverse covariance matrix estimation under Gaussian graphical models require the underlying graph and hence the ordering of variables to be known. However, in practice, such information on the true underlying model is often unavailable. We therefore propose a novel permutation-based Bayesian approach to tackle the unknown variable ordering issue. In particular, we utilize multiple maximum a posteriori estimates under the DAG-Wishart prior for each permutation, and subsequently construct the final estimate of the inverse covariance matrix. The proposed estimator has smaller variability and yields order-invariant property. We establish posterior convergence rates under mild assumptions and illustrate that our method outperforms existing approaches in estimating the inverse covariance matrices via simulation studies.  相似文献   

11.
This paper surveys various shrinkage, smoothing and selection priors from a unifying perspective and shows how to combine them for Bayesian regularisation in the general class of structured additive regression models. As a common feature, all regularisation priors are conditionally Gaussian, given further parameters regularising model complexity. Hyperpriors for these parameters encourage shrinkage, smoothness or selection. It is shown that these regularisation (log-) priors can be interpreted as Bayesian analogues of several well-known frequentist penalty terms. Inference can be carried out with unified and computationally efficient MCMC schemes, estimating regularised regression coefficients and basis function coefficients simultaneously with complexity parameters and measuring uncertainty via corresponding marginal posteriors. For variable and function selection we discuss several variants of spike and slab priors which can also be cast into the framework of conditionally Gaussian priors. The performance of the Bayesian regularisation approaches is demonstrated in a hazard regression model and a high-dimensional geoadditive regression model.  相似文献   

12.
Markov chain Monte Carlo techniques have revolutionized the field of Bayesian statistics. Their power is so great that they can even accommodate situations in which the structure of the statistical model itself is uncertain. However, the analysis of such trans-dimensional (TD) models is not easy and available software may lack the flexibility required for dealing with the complexities of real data, often because it does not allow the TD model to be simply part of some bigger model. In this paper we describe a class of widely applicable TD models that can be represented by a generic graphical model, which may be incorporated into arbitrary other graphical structures without significantly affecting the mechanism of inference. We also present a decomposition of the reversible jump algorithm into abstract and problem-specific components, which provides infrastructure for applying the method to all models in the class considered. These developments represent a first step towards a context-free method for implementing TD models that will facilitate their use by applied scientists for the practical exploration of model uncertainty. Our approach makes use of the popular WinBUGS framework as a sampling engine and we illustrate its use via two simple examples in which model uncertainty is a key feature.  相似文献   

13.
In the framework of model-based cluster analysis, finite mixtures of Gaussian components represent an important class of statistical models widely employed for dealing with quantitative variables. Within this class, we propose novel models in which constraints on the component-specific variance matrices allow us to define Gaussian parsimonious clustering models. Specifically, the proposed models are obtained by assuming that the variables can be partitioned into groups resulting to be conditionally independent within components, thus producing component-specific variance matrices with a block diagonal structure. This approach allows us to extend the methods for model-based cluster analysis and to make them more flexible and versatile. In this paper, Gaussian mixture models are studied under the above mentioned assumption. Identifiability conditions are proved and the model parameters are estimated through the maximum likelihood method by using the Expectation-Maximization algorithm. The Bayesian information criterion is proposed for selecting the partition of the variables into conditionally independent groups. The consistency of the use of this criterion is proved under regularity conditions. In order to examine and compare models with different partitions of the set of variables a hierarchical algorithm is suggested. A wide class of parsimonious Gaussian models is also presented by parameterizing the component-variance matrices according to their spectral decomposition. The effectiveness and usefulness of the proposed methodology are illustrated with two examples based on real datasets.  相似文献   

14.
Both knowledge-based systems and statistical models are typically concerned with making predictions about future observables. Here we focus on assessment of predictive performance and provide two techniques for improving the predictive performance of Bayesian graphical models. First, we present Bayesian model averaging, a technique for accounting for model uncertainty.

Second, we describe a technique for eliciting a prior distribution for competing models from domain experts. We explore the predictive performance of both techniques in the context of a urological diagnostic problem.  相似文献   

15.
Bayesian model averaging (BMA) is an effective technique for addressing model uncertainty in variable selection problems. However, current BMA approaches have computational difficulty dealing with data in which there are many more measurements (variables) than samples. This paper presents a method for combining ?1 regularization and Markov chain Monte Carlo model composition techniques for BMA. By treating the ?1 regularization path as a model space, we propose a method to resolve the model uncertainty issues arising in model averaging from solution path point selection. We show that this method is computationally and empirically effective for regression and classification in high-dimensional data sets. We apply our technique in simulations, as well as to some applications that arise in genomics.  相似文献   

16.
Family studies are often conducted to examine the existence of familial aggregation. Particularly, twin studies can model separately the genetic and environmental contribution. Here we estimate the heritability of quantitative traits via variance components of random-effects in linear mixed models (LMMs). The motivating example was a myopia twin study containing complex nesting data structures: twins and siblings in the same family and observations on both eyes for each individual. Three models are considered for this nesting structure. Our proposal takes into account the model uncertainty in both covariates and model structures via an extended Bayesian model averaging (EBMA) procedure. We estimate the heritability using EBMA under three suggested model structures. When compared with the results under the model with the highest posterior model probability, the EBMA estimate has smaller variation and is slightly conservative. Simulation studies are conducted to evaluate the performance of variance-components estimates, as well as the selections of risk factors, under the correct or incorrect structure. The results indicate that EBMA, with consideration of uncertainties in both covariates and model structures, is robust in model misspecification than the usual Bayesian model averaging (BMA) that considers only uncertainty in covariates selection.  相似文献   

17.
ABSTRACT

An information framework is proposed for studying uncertainty and disagreement of economic forecasters. This framework builds upon the mixture model of combining density forecasts through a systematic application of the information theory. The framework encompasses the measures used in the literature and leads to their generalizations. The focal measure is the Jensen–Shannon divergence of the mixture which admits Kullback–Leibler and mutual information representations. Illustrations include exploring the dynamics of the individual and aggregate uncertainty about the US inflation rate using the survey of professional forecasters (SPF). We show that the normalized entropy index corrects some of the distortions caused by changes of the design of the SPF over time. Bayesian hierarchical models are used to examine the association of the inflation uncertainty with the anticipated inflation and the dispersion of point forecasts. Implementation of the information framework based on the variance and Dirichlet model for capturing uncertainty about the probability distribution of the economic variable are briefly discussed.  相似文献   

18.
Inference, quantile forecasting and model comparison for an asymmetric double smooth transition heteroskedastic model is investigated. A Bayesian framework in employed and an adaptive Markov chain Monte Carlo scheme is designed. A mixture prior is proposed that alleviates the usual identifiability problem as the speed of transition parameter tends to zero, and an informative prior for this parameter is suggested, that allows for reliable inference and a proper posterior, despite the non-integrability of the likelihood function. A formal Bayesian posterior model comparison procedure is employed to compare the proposed model with its two limiting cases: the double threshold GARCH and symmetric ARX GARCH models. The proposed methods are illustrated using both simulated and international stock market return series. Some illustrations of the advantages of an adaptive sampling scheme for these models are also provided. Finally, Bayesian forecasting methods are employed in a Value-at-Risk study of the international return series. The results generally favour the proposed smooth transition model and highlight explosive and smooth nonlinear behaviour in financial markets.  相似文献   

19.
Modelling time-varying and frequency-specific relationships between two brain signals is becoming an essential methodological tool to answer theoretical questions in experimental neuroscience. In this article, we propose to estimate a frequency Granger causality statistic that may vary in time in order to evaluate the functional connections between two brain regions during a task. We use for that purpose an adaptive Kalman filter type of estimator of a linear Gaussian vector autoregressive model with coefficients evolving over time. The estimation procedure is achieved through variational Bayesian approximation and is extended for multiple trials. This Bayesian State Space (BSS) model provides a dynamical Granger-causality statistic that is quite natural. We propose to extend the BSS model to include the à trous Haar decomposition. This wavelet-based forecasting method is based on a multiscale resolution decomposition of the signal using the redundant à trous wavelet transform and allows us to capture short- and long-range dependencies between signals. Equally importantly it allows us to derive the desired dynamical and frequency-specific Granger-causality statistic. The application of these models to intracranial local field potential data recorded during a psychological experimental task shows the complex frequency-based cross-talk between amygdala and medial orbito-frontal cortex.  相似文献   

20.
Generalized additive models represented using low rank penalized regression splines, estimated by penalized likelihood maximisation and with smoothness selected by generalized cross validation or similar criteria, provide a computationally efficient general framework for practical smooth modelling. Various authors have proposed approximate Bayesian interval estimates for such models, based on extensions of the work of Wahba, G. (1983) [Bayesian confidence intervals for the cross validated smoothing spline. J. R. Statist. Soc. B 45 , 133–150] and Silverman, B.W. (1985) [Some aspects of the spline smoothing approach to nonparametric regression curve fitting. J. R. Statist. Soc. B 47 , 1–52] on smoothing spline models of Gaussian data, but testing of such intervals has been rather limited and there is little supporting theory for the approximations used in the generalized case. This paper aims to improve this situation by providing simulation tests and obtaining asymptotic results supporting the approximations employed for the generalized case. The simulation results suggest that while across‐the‐model performance is good, component‐wise coverage probabilities are not as reliable. Since this is likely to result from the neglect of smoothing parameter variability, a simple and efficient simulation method is proposed to account for smoothing parameter uncertainty: this is demonstrated to substantially improve the performance of component‐wise intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号