首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Instantaneous dependence among several asset returns is the main reason for the computational and statistical complexities in working with full multivariate GARCH models. Using the Cholesky decomposition of the covariance matrix of such returns, we introduce a broad class of multivariate models where univariate GARCH models are used for variances of individual assets and parsimonious models for the time-varying unit lower triangular matrices. This approach, while reducing the number of parameters and severity of the positive-definiteness constraint, has several advantages compared to the traditional orthogonal and related GARCH models. Its major drawback is the potential need for an a priori ordering or grouping of the stocks in a portfolio, which through a case study we show can be taken advantage of so far as reducing the forecast error of the volatilities and the dimension of the parameter space are concerned. Moreover, the Cholesky decomposition, unlike its competitors, decompose the normal likelihood function as a product of univariate normal likelihoods with independent parameters, resulting in fast estimation algorithms. Gaussian maximum likelihood methods of estimation of the parameters are developed. The methodology is implemented for a real financial dataset with seven assets, and its forecasting power is compared with other existing models.  相似文献   

2.
The existing dynamic models for realized covariance matrices do not account for an asymmetry with respect to price directions. We modify the recently proposed conditional autoregressive Wishart (CAW) model to allow for the leverage effect. In the conditional threshold autoregressive Wishart (CTAW) model and its variations the parameters governing each asset's volatility and covolatility dynamics are subject to switches that depend on signs of previous asset returns or previous market returns. We evaluate the predictive ability of the CTAW model and its restricted and extended specifications from both statistical and economic points of view. We find strong evidence that many CTAW specifications have a better in-sample fit and tend to have a better out-of-sample predictive ability than the original CAW model and its modifications.  相似文献   

3.
It is well known that in finance variances and covariances of asset returns move together over time. Recently, much interest has been aroused by an approach involving the use of the realized covariance (RCOV) matrix constructed from high-frequency returns as the ex-post realization of the covariance matrix of low-frequency returns. For the analysis of dynamics of RCOV matrices, we propose the generalized conditional autoregressive Wishart (GCAW) model. Both the noncentrality matrix and scale matrix of the Wishart distribution are driven by the lagged values of RCOV matrices, and represent two different sources of dynamics, respectively. The GCAW is a generalization of the existing models, and accounts for symmetry and positive definiteness of RCOV matrices without imposing any parametric restriction. Some important properties such as conditional moments, unconditional moments, and stationarity are discussed. Empirical examples including sequences of daily RCOV matrices from the New York Stock Exchange illustrate that our model outperforms the existing models in terms of model fitting and forecasting.  相似文献   

4.
This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance–covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. The model provides a useful approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome, enables analysis of the survival outcome with informative censoring and intermittently measured time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes. Unlike previously studied joint models, our model allows for heterogeneous random covariance matrices. It also offers a framework to assess the homogeneous covariance assumption of existing joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference. Its performances and frequentist properties are investigated using simulations. A real data example is used to illustrate the usefulness of the approach.  相似文献   

5.
Missing data in longitudinal studies can create enormous challenges in data analysis when coupled with the positive-definiteness constraint on a covariance matrix. For complete balanced data, the Cholesky decomposition of a covariance matrix makes it possible to remove the positive-definiteness constraint and use a generalized linear model setup to jointly model the mean and covariance using covariates (Pourahmadi, 2000). However, this approach may not be directly applicable when the longitudinal data are unbalanced, as coherent regression models for the dependence across all times and subjects may not exist. Within the existing generalized linear model framework, we show how to overcome this and other challenges by embedding the covariance matrix of the observed data for each subject in a larger covariance matrix and employing the familiar EM algorithm to compute the maximum likelihood estimates of the parameters and their standard errors. We illustrate and assess the methodology using real data sets and simulations.  相似文献   

6.
Abstract

This article proposes a new approach to analyze multiple vector autoregressive (VAR) models that render us a newly constructed matrix autoregressive (MtAR) model based on a matrix-variate normal distribution with two covariance matrices. The MtAR is a generalization of VAR models where the two covariance matrices allow the extension of MtAR to a structural MtAR analysis. The proposed MtAR can also incorporate different lag orders across VAR systems that provide more flexibility to the model. The estimation results from a simulation study and an empirical study on macroeconomic application show favorable performance of our proposed models and method.  相似文献   

7.
Forecast methods for realized volatilities are reviewed. Basic theoretical and empirical features of realized volatilities as well as versions of estimators of realized volatility are briefly investigated. Major forecast models featuring the empirical aspects of persistency and asymmetry are discussed in terms of forecasting models for which the heterogeneous autoregressive (HAR) model is one of the most basic one in the recent literature. Forecast methods addressing the issues of jump, break, implied volatility, and market microstructure noise are reviewed. Forecasting realized covariance matrix is also considered.  相似文献   

8.
Abstract

Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite.

Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances.  相似文献   

9.
Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. If misspecification occurs, it may lead to inefficient or biased estimators of parameters in the mean. One of the most commonly used methods for handling the covariance matrix is based on simultaneous modeling of the Cholesky decomposition. Therefore, in this paper, we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a fully Bayesian inference for joint mean and covariance models based on this decomposition. A computational efficient Markov chain Monte Carlo method which combines the Gibbs sampler and Metropolis–Hastings algorithm is implemented to simultaneously obtain the Bayesian estimates of unknown parameters, as well as their standard deviation estimates. Finally, several simulation studies and a real example are presented to illustrate the proposed methodology.  相似文献   

10.
This paper presents a fully Bayesian approach to multivariate t regression models whose mean vector and scale covariance matrix are modelled jointly for analyzing longitudinal data. The scale covariance structure is factorized in terms of unconstrained autoregressive and scale innovation parameters through a modified Cholesky decomposition. A computationally flexible data augmentation sampler coupled with the Metropolis-within-Gibbs scheme is developed for computing the posterior distributions of parameters. The Bayesian predictive inference for the future response vector is also investigated. The proposed methodologies are illustrated through a real example from a sleep dose–response study.  相似文献   

11.
In longitudinal data analysis, efficient estimation of regression coefficients requires a correct specification of certain covariance structure, and efficient estimation of covariance matrix requires a correct specification of mean regression model. In this article, we propose a general semiparametric model for the mean and the covariance simultaneously using the modified Cholesky decomposition. A regression spline-based approach within the framework of generalized estimating equations is proposed to estimate the parameters in the mean and the covariance. Under regularity conditions, asymptotic properties of the resulting estimators are established. Extensive simulation is conducted to investigate the performance of the proposed estimator and in the end a real data set is analysed using the proposed approach.  相似文献   

12.
13.
A method is presented for evaluating the covariance matrix of a set of sequential forecasts obtained by regression analysis. The matrix can be used to derive the relation between the variance of the forecasts on the one hand, and the lead times between the forecasting time and the time at which the forecasted variables are realized, on the other hand. The determination of this relation is important whenever the optimal frequency of forecasting must be determined.  相似文献   

14.
Vine copulas are a highly flexible class of dependence models, which are based on the decomposition of the density into bivariate building blocks. For applications one usually makes the simplifying assumption that copulas of conditional distributions are independent of the variables on which they are conditioned. However this assumption has been criticised for being too restrictive. We examine both simplified and non‐simplified vine copulas in three dimensions and investigate conceptual differences. We show and compare contour surfaces of three‐dimensional vine copula models, which prove to be much more informative than the contour lines of the bivariate marginals. Our investigation shows that non‐simplified vine copulas can exhibit arbitrarily irregular shapes, whereas simplified vine copulas appear to be smooth extrapolations of their bivariate margins to three dimensions. In addition to a variety of constructed examples, we also investigate a three‐dimensional subset of the well‐known uranium data set and visually detect the fact that a non‐simplified vine copula is necessary to capture its complex dependence structure.  相似文献   

15.
We propose a parametric nonlinear time-series model, namely the Autoregressive-Stochastic volatility with threshold (AR-SVT) model with mean equation for forecasting level and volatility. Methodology for estimation of parameters of this model is developed by first obtaining recursive Kalman filter time-update equation and then employing the unrestricted quasi-maximum likelihood method. Furthermore, optimal one-step and two-step-ahead out-of-sample forecasts formulae along with forecast error variances are derived analytically by recursive use of conditional expectation and variance. As an illustration, volatile all-India monthly spices export during the period January 2006 to January 2012 is considered. Entire data analysis is carried out using EViews and matrix laboratory (MATLAB) software packages. The AR-SVT model is fitted and interval forecasts for 10 hold-out data points are obtained. Superiority of this model for describing and forecasting over other competing models for volatility, namely AR-Generalized autoregressive conditional heteroscedastic, AR-Exponential GARCH, AR-Threshold GARCH, and AR-Stochastic volatility models is shown for the data under consideration. Finally, for the AR-SVT model, optimal out-of-sample forecasts along with forecasts of one-step-ahead variances are obtained.  相似文献   

16.
Stationary time series models built from parametric distributions are, in general, limited in scope due to the assumptions imposed on the residual distribution and autoregression relationship. We present a modeling approach for univariate time series data, which makes no assumptions of stationarity, and can accommodate complex dynamics and capture non-standard distributions. The model for the transition density arises from the conditional distribution implied by a Bayesian nonparametric mixture of bivariate normals. This results in a flexible autoregressive form for the conditional transition density, defining a time-homogeneous, non-stationary Markovian model for real-valued data indexed in discrete time. To obtain a computationally tractable algorithm for posterior inference, we utilize a square-root-free Cholesky decomposition of the mixture kernel covariance matrix. Results from simulated data suggest that the model is able to recover challenging transition densities and non-linear dynamic relationships. We also illustrate the model on time intervals between eruptions of the Old Faithful geyser. Extensions to accommodate higher order structure and to develop a state-space model are also discussed.  相似文献   

17.
Given observations on an m × n lattice, approximate maximum likelihood estimates are derived for a family of models including direct covariance, spatial moving average, conditional autoregressive and simultaneous autoregressive models. The approach involves expressing the (approximate) covariance matrix of the observed variables in terms of a linear combination of neighbour relationship matrices, raised to a power. The structure is such that the eigenvectors of the covariance matrix are independent of the parameters of interest. This result leads to a simple Fisher scoring type algorithm for estimating the parameters. The ideas are illustrated by fitting models to some remotely sensed data.  相似文献   

18.
The estimation of the covariance matrix is important in the analysis of bivariate longitudinal data. A good estimator for the covariance matrix can improve the efficiency of the estimators of the mean regression coefficients. Furthermore, the covariance estimation itself is also of interest, but it is a challenging job to model the covariance matrix of bivariate longitudinal data due to the complex structure and positive definite constraint. In addition, most of existing approaches are based on the maximum likelihood, which is very sensitive to outliers or heavy-tail error distributions. In this article, an adaptive robust estimation method is proposed for bivariate longitudinal data. Unlike the existing likelihood-based methods, the proposed method can adapt to different error distributions. Specifically, at first, we utilize the modified Cholesky block decomposition to parameterize the covariance matrices. Secondly, we apply the bounded Huber's score function to develop a set of robust generalized estimating equations to estimate the parameters both in the mean and the covariance models simultaneously. A data-driven approach is presented to select the parameter c in the Huber's score function, which can ensure that the proposed method is robust and efficient. A simulation study and a real data analysis are conducted to illustrate the robustness and efficiency of the proposed approach.  相似文献   

19.
Abstract

In this paper we present several goodness-of-fit tests for the centralized Wishart process, a popular matrix-variate time series model used to capture the stochastic properties of realized covariance matrices. The new test procedures are based on the extended Bartlett decomposition derived from the properties of the Wishart distribution and allows to obtain sets of independently and standard normally distributed random variables under the null hypothesis. Several tests for normality and independence are then applied to these variables in order to support or to reject the underlying assumption of a centralized Wishart process. In order to investigate the influence of estimated parameters on the suggested testing procedures in the finite-sample case, a simulation study is conducted. Finally, the new test methods are applied to real data consisting of realized covariance matrices computed for the returns on six assets traded on the New York Stock Exchange.  相似文献   

20.
We evaluate alternative models of variances and correlations with an economic loss function. We construct portfolios to minimize predicted variance subject to a required return. It is shown that the realized volatility is smallest for the correctly specified covariance matrix for any vector of expected returns. A test of relative performance of two covariance matrices is based on work of Diebold and Mariano. The method is applied to stocks and bonds and then to highly correlated assets. On average, dynamically correct correlations are worth around 60 basis points in annualized terms, but on some days they may be worth hundreds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号