首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We introduce a general class of semiparametric hazard regression models, called extended hazard (EH) models, that are designed to accommodate various survival schemes with time-dependent covariates. The EH model contains both the Cox model and the accelerated failure time (AFT) model as its subclasses so that we can use this nested structure to perform model selection between the Cox model and the AFT model. A class of estimating equations using counting process and martingale techniques is developed to estimate the regression parameters of the proposed model. The performance of the estimating procedure and the impact of model misspecification are assessed through simulation studies. Two data examples, Stanford heart transplant data and Mediterranean fruit flies, egg-laying data, are used to demonstrate the usefulness of the EH model.  相似文献   

2.
Variable and model selection problems are fundamental to high-dimensional statistical modeling in diverse fields of sciences. Especially in health studies, many potential factors are usually introduced to determine an outcome variable. This paper deals with the problem of high-dimensional statistical modeling through the analysis of the trauma annual data in Greece for 2005. The data set is divided into the experiment and control sets and consists of 6334 observations and 112 factors that include demographic, transport and intrahospital data used to detect possible risk factors of death. In our study, different model selection techniques are applied to the experiment set and the notion of deviance is used on the control set to assess the fit of the overall selected model. The statistical methods employed in this work were the non-concave penalized likelihood methods, smoothly clipped absolute deviation, least absolute shrinkage and selection operator, and Hard, the generalized linear logistic regression, and the best subset variable selection.The way of identifying the significant variables in large medical data sets along with the performance and the pros and cons of the various statistical techniques used are discussed. The performed analysis reveals the distinct advantages of the non-concave penalized likelihood methods over the traditional model selection techniques.  相似文献   

3.
Composite morbidity indices summarize geographic inequalities in disease, and are used to distribute resources. A spatial latent variable approach is developed for such an index, focusing on lung cancer in 3,141 U.S. counties. The model incorporates multiple indicators (cancer deaths and incidence), but also allows for population risk variables (area socio-economic, environmental, and smoking indicators) that affect lung cancer, and for missingness among indicators or risk variables. Selection of significant causes is illustrated, including nonadaptive and adaptive selection. To reflect geographic clustering in lung cancer, the latent morbidity index is spatially correlated, although the level of correlation is data determined.  相似文献   

4.
In this article we propose a nonparametric test for poolability in large dimensional semiparametric panel data models with cross-section dependence based on the sieve estimation technique. To construct the test statistic, we only need to estimate the model under the alternative. We establish the asymptotic normal distributions of our test statistic under the null hypothesis of poolability and a sequence of local alternatives, and prove the consistency of our test. We also suggest a bootstrap method as an alternative way to obtain the critical values. A small set of Monte Carlo simulations indicate the test performs reasonably well in finite samples.  相似文献   

5.
A growth curve analysis is often applied to estimate patterns of changes in a given characteristic of different individuals. It is also used to find out if the variations in the growth rates among individuals are due to effects of certain covariates. In this paper, a random coefficient linear regression model, as a special case of the growth curve analysis, is generalized to accommodate the situation where the set of influential covariates is not known a priori. Two different approaches for seleaing influential covariates (a weighted stepwise selection procedure and a modified version of Rao and Wu’s selection criterion) for the random slope coefficient of a linear regression model with unbalanced data are proposed. Performances of these methods are evaluated by means of Monte-Carlo simulation. In addition, several methods (Maximum Likelihood, Restricted Maximum Likelihood, Pseudo Maximum Likelihood and Method of Moments) for estimating the parameters of the selected model are compared Proposed variable selection schemes and estimators are appliedtotheactualindustrial problem which motivated this investigation.  相似文献   

6.
It is important to detect the variance heterogeneity in regression models. Heteroscedasticity tests have been well studied in parametric and nonparametric regression models. This paper presents a consistent test for heteroscedasticity for nonlinear semi-parametric regression models with nonparametric variance function based on the kernel method. The properties of the test are investigated through Monte Carlo simulations. The test methods are illustrated with a real example.  相似文献   

7.
Residual plots are a standard tool for assessing model fit. When some outcome data are censored, standard residual plots become less appropriate. Here, we develop a new procedure for producing residual plots for linear regression models where some or all of the outcome data are censored. We implement two approaches for incorporating parameter uncertainty. We illustrate our methodology by examining the model fit for an analysis of bacterial load data from a trial for chronic obstructive pulmonary disease. Simulated datasets show that the method can be used when the outcome data consist of a variety of types of censoring.  相似文献   

8.
In this paper, we develop a numerical method for evaluating the large sample bias in estimated regression coefficients arising due to exposure model misspecification while adjusting for measurement errors in errors-in-variable regression. The application of the proposed method has been demonstrated in the case of a logistic errors-in-variable regression model. The method is based on the combination of Monte-Carlo, numerical and, in some special cases, analytic integration techniques. The proposed method facilitates the investigation of the limiting bias in the estimated regression parameters based on a single data set rather than on repeated data sets as required by the conventional repeated sample method. Simulation studies demonstrate that the proposed method provides very similar estimates of bias in the estimated regression parameters under exposure model misspecification in logistic errors-in-variable regression with a higher degree of precision as compared to the conventional repeated sample method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号