首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Saddlepoint methods, extended to distribution functions, can provide highly accurate tail probabilities for testing real parameters in exponential models. For extensions, asymptotic connections among various test quantities are needed. For five quantities, the maximum likelihood departure standardized by observed and expected information, the score function standardized by observed and expected information, and the signed square root of the likelihood ratio statistic, the needed connections to third order are recorded. Their use is illustrated by a simple integration proof of the Lugannani and Rice formula.  相似文献   

2.
In this paper we introduce and study two new families of statistics for the problem of testing linear combinations of the parameters in logistic regression models. These families are based on the phi-divergence measures. One of them includes the classical likelihood ratio statistic and the other the classical Pearson's statistic for this problem. It is interesting to note that the vector of unknown parameters, in the two new families of phi-divergence statistics considered in this paper, is estimated using the minimum phi-divergence estimator instead of the maximum likelihood estimator. Minimum phi-divergence estimators are a natural extension of the maximum likelihood estimator.  相似文献   

3.
For testing separate families of hypotheses, the likelihood ratio test does not have the usual asymptotic properties. This paper considers the asymptotic distribution of the ratio of maximized likelihoods (RML) statistic in the special case of testing separate scale or location-scale families of distributions. We derive saddlepoint approximations to the density and tail probabilities of the log of the RML statistic. These approximations are based on the expansion of the log of the RML statistic up to the second order, which is shown not to depend on the location and scale parameters. The resulting approximations are applied in several cases, including normal versus Laplace, normal versus Cauchy, and Weibull versus log-normal. Our results show that the saddlepoint approximations are satisfactory, even for fairly small sample sizes, and are more accurate than normal approximations and Edgeworth approximations, especially for tail probabilities that are the values of main interest in hypothesis testing problems.  相似文献   

4.
In this paper, we are concerned with testing homogeneity against trend. Parsons (1979) considered the exact distribution of the test statistic based on the Wilcoxon type scores. We extend his result to the case of the general scores. Then we give a table of significance probabilities for the Fisher-Yates normal scores. We also study the asymptotic distribution of the test statis-tic based on the general scores under the null hypothesis, and the asymptotic relative efficiency against Bartholomew's likelihood ratio test assuming normality  相似文献   

5.
The likelihood ratio test for equality of ordered means is known to have power characteristics that are generally superior to those of competing procedures. Difficulties in implementing this test have led to the development of alternative approaches, most of which are based on contrasts. While orthogonal contrasts can be chosen to simplify the distribution theory, we propose a class of tests that is easy to implement even if the contrasts used are not orthogonal. An overall measure of significance may be obtained by using Fisher's combination statistic to combine the dependent p-values arising from these contrasts. This method can be easily implemented for testing problems involving unequal sample sizes and any partial order, and has power properties that compare well with those of the likelihood ratio test and other contrast-based tests.  相似文献   

6.
Abstract.  The large deviation modified likelihood ratio statistic is studied for testing a variance component equal to a specified value. Formulas are presented in the general balanced case, whereas in the unbalanced case only the one-way random effects model is studied. Simulation studies are presented, showing that the normal approximation to the large deviation modified likelihood ratio statistic gives confidence intervals for variance components with coverage probabilities very close to the nominal confidence coefficient.  相似文献   

7.
Hollander (1970) proposed a conditionally distribution-free test of bivariate symmetry based on the empirical distribution function. In this paper Hollander’s test statistic is examined In greater detail: in particular; its conditional asymptotic distribution is derived under the null hypothesis as well as under a sequence of local alternatives. Percentage points of the asymptotic distribution are presented; a power comparison between Hollander’s statistic and the likelihood ratio criterion in testing a variant of the sphericity hypothesis in multivariate analysis is made.  相似文献   

8.
This paper is concerned with testing the equality of scale parameters of K(> 2) two-parameter exponential distributions in presence of unspecified location parameters based on complete and type II censored samples. We develop a marginal likelihood ratio statistic, a quadratic statistic (Qu) (Nelson, 1982) based on maximum marginal likelihood estimates of the scale parameters under the null and the alternative hypotheses, a C(a) statistic (CPL) (Neyman, 1959) based on the profile likelihood estimate of the scale parameter under the null hypothesis and an extremal scale parameter ratio statistic (ESP) (McCool, 1979). We show that the marginal likelihood ratio statistic is equivalent to the modified Bartlett test statistic. We use Bartlett's small sample correction to the marginal likelihood ratio statistic and call it the modified marginal likelihood ratio statistic (MLB). We then compare the four statistics, MLBi Qut CPL and ESP in terms of size and power by using Monte Carlo simulation experiments. For the variety of sample sizes and censoring combinations and nominal levels considered the statistic MLB holds nominal level most accurately and based on empirically calculated critical values, this statistic performs best or as good as others in most situations. Two examples are given.  相似文献   

9.
We give two simple approximations for evaluating the cumulative probabilities of the doubly noncentral z distribution. These can easily be used for evaluating the cumulative probabilities of the doubly noncentral F distribution as well. We compare our results with those obtained by Tiku (1965) using series expansion. An industrial situation where a quality characteristic of interest follows the doubly noncentral z distribution is also cited. However, in this case the exact probabilities could be calculated using results on the ratio of two normal variables.  相似文献   

10.
For a hypothesis testing problem involving the location and scale parameters of an exponential distribution, Perng (1977) proposed a test procedure based on the first r out of n observed failure times. In this paper the likelihood ratio test is determined, critical values are provided and the asymptotic null distribution is determined. An alternate test based on an F statistic is also proposed and the critical regions and power functions of the procedures are compared.  相似文献   

11.
Abstract

The problem of testing Rayleigh distribution against exponentiality, based on a random sample of observations is considered. This problem arises in survival analysis, when testing a linearly increasing hazard function against a constant hazard function. It is shown that for this problem the most powerful invariant test is equivalent to the “ratio of maximized likelihoods” (RML) test. However, since the two families are separate, the RML test statistic does not have the usual asymptotic chi-square distribution. Normal and saddlepoint approximations to the distribution of the RML test statistic are derived. Simulations show that saddlepoint approximation is more accurate than the normal approximation, especially for tail probabilities that are the main values of interest in hypothesis testing.  相似文献   

12.
Bayes methodology provides posterior distribution functions based on parametric likelihoods adjusted for prior distributions. A distribution-free alternative to the parametric likelihood is use of empirical likelihood (EL) techniques, well known in the context of nonparametric testing of statistical hypotheses. Empirical likelihoods have been shown to exhibit many of the properties of conventional parametric likelihoods. In this paper, we propose and examine Bayes factors (BF) methods that are derived via the EL ratio approach. Following Kass and Wasserman (1995), we consider Bayes factors type decision rules in the context of standard statistical testing techniques. We show that the asymptotic properties of the proposed procedure are similar to the classical BF's asymptotic operating characteristics. Although we focus on hypothesis testing, the proposed approach also yields confidence interval estimators of unknown parameters. Monte Carlo simulations were conducted to evaluate the theoretical results as well as to demonstrate the power of the proposed test.  相似文献   

13.
This article studies the empirical likelihood method for the first-order random coefficient integer-valued autoregressive process. The limiting distribution of the log empirical likelihood ratio statistic is established. Confidence region for the parameter of interest and its coverage probabilities are given, and hypothesis testing is considered. The maximum empirical likelihood estimator for the parameter is derived and its asymptotic properties are established. The performances of the estimator are compared with the conditional least squares estimator via simulation.  相似文献   

14.
Fisher's A statistic, often called the adjusted R2 statistic, is shown to be a close approximation to the maximum likelihood estimate of the multiple correlation coefficient, p2, based on the marginal distribution of R2. Expansions for the estimate are obtained. The same methods lead to maximum marginal likelihood estimators for the noncentrality parameters for noncentral X2 and F.  相似文献   

15.
A Wald test-based approach for power and sample size calculations has been presented recently for logistic and Poisson regression models using the asymptotic normal distribution of the maximum likelihood estimator, which is applicable to tests of a single parameter. Unlike the previous procedures involving the use of score and likelihood ratio statistics, there is no simple and direct extension of this approach for tests of more than a single parameter. In this article, we present a method for computing sample size and statistical power employing the discrepancy between the noncentral and central chi-square approximations to the distribution of the Wald statistic with unrestricted and restricted parameter estimates, respectively. The distinguishing features of the proposed approach are the accommodation of tests about multiple parameters, the flexibility of covariate configurations and the generality of overall response levels within the framework of generalized linear models. The general procedure is illustrated with some special situations that have motivated this research. Monte Carlo simulation studies are conducted to assess and compare its accuracy with existing approaches under several model specifications and covariate distributions.  相似文献   

16.
Two statistics are suggested for testing the equality of two normal percentiles where population means and variances are unknown. The first is based on the generalized likelihood ratio test (LRT), the second on Cochran's statistic used in the Behrens-Fisher problem. Size and power comparisons are made by using simulation and asympototic theory.  相似文献   

17.
The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology is well-known to provide powerful likelihood ratio tests. In the nonparametric context, the classical empirical likelihood (EL) ratio method is often applied in order to efficiently approximate properties of parametric likelihoods, using an approach based on substituting empirical distribution functions for their population counterparts. The optimal parametric likelihood ratio approach is however based on density functions. We develop and analyze the EL ratio approach based on densities in order to test the IG model fit. We show that the proposed test is an improvement over the entropy-based goodness-of-fit test for IG presented by Mudholkar and Tian (2002). Theoretical support is obtained by proving consistency of the new test and an asymptotic proposition regarding the null distribution of the proposed test statistic. Monte Carlo simulations confirm the powerful properties of the proposed method. Real data examples demonstrate the applicability of the density-based EL ratio goodness-of-fit test for an IG assumption in practice.  相似文献   

18.
We consider permutation tests based on a likelihood ratio like statistic for the one way or k sample design used in an example in Kolassa and Robinson [(2011), ‘Saddlepoint Approximations for Likelihood Ratio Like Statistics with Applications to Permutation Tests’, Annals of Statistics, 39, 3357–3368]. We give explicitly the region in which the statistic exists, obtaining results which permit calculation of the statistic on the boundary of this region. Numerical examples are given to illustrate improvement in the power of the tests compared to the classical statistics for long-tailed error distributions and no loss of power for normal error distributions.  相似文献   

19.
A model for analyzing release-recapture data is presented that generalizes a previously existing individual covariate model to include multiple groups of animals. As in the previous model, the generalized version includes selection parameters that relate individual covariates to survival potential. Significance of the selection parameters was equivalent to significance of the individual covariates. Simulation studies were conducted to investigate three inferential properties with respect to the selection parameters: (1) sample size requirements, (2) validity of the likelihood ratio test (LRT) and (3) power of the LRT. When the survival and capture probabilities ranged from 0.5 to 1.0, a total sample size of 300 was necessary to achieve a power of 0.80 at a significance level of 0.1 when testing the significance of the selection parameters. However, only half that (a total of 150) was necessary for the distribution of the maximum likelihood estimators of the selection parameters to approximate their asymptotic distributions. In general, as the survival and capture probabilities decreased, the sample size requirements increased. The validity of the LRT for testing the significance of the selection parameters was confirmed because the LRT statistic was distributed as theoretically expected under the null hypothesis, i.e. like a chi 2 random variable. When the baseline survival model was fully parameterized with population and interval effects, the LRT was also valid in the presence of unaccounted for random variation. The power of the LRT for testing the selection parameters was unaffected by over-parameterization of the baseline survival and capture models. The simulation studies showed that for testing the significance of individual covariates to survival the LRT was remarkably robust to assumption violations.  相似文献   

20.
A model for analyzing release-recapture data is presented that generalizes a previously existing individual covariate model to include multiple groups of animals. As in the previous model, the generalized version includes selection parameters that relate individual covariates to survival potential. Significance of the selection parameters was equivalent to significance of the individual covariates. Simulation studies were conducted to investigate three inferential properties with respect to the selection parameters: (1) sample size requirements, (2) validity of the likelihood ratio test (LRT) and (3) power of the LRT. When the survival and capture probabilities ranged from 0.5 to 1.0, a total sample size of 300 was necessary to achieve a power of 0.80 at a significance level of 0.1 when testing the significance of the selection parameters. However, only half that (a total of 150) was necessary for the distribution of the maximum likelihood estimators of the selection parameters to approximate their asymptotic distributions. In general, as the survival and capture probabilities decreased, the sample size requirements increased. The validity of the LRT for testing the significance of the selection parameters was confirmed because the LRT statistic was distributed as theoretically expected under the null hypothesis, i.e. like a chi 2 random variable. When the baseline survival model was fully parameterized with population and interval effects, the LRT was also valid in the presence of unaccounted for random variation. The power of the LRT for testing the selection parameters was unaffected by over-parameterization of the baseline survival and capture models. The simulation studies showed that for testing the significance of individual covariates to survival the LRT was remarkably robust to assumption violations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号