首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We present a Bayesian forecasting methodology of discrete-time finite state-space hidden Markov models with non-constant transition matrix that depends on a set of exogenous covariates. We describe an MCMC reversible jump algorithm for predictive inference, allowing for model uncertainty regarding the set of covariates that affect the transition matrix. We apply our models to interest rates and we show that our general model formulation improves the predictive ability of standard homogeneous hidden Markov models.  相似文献   

2.
This paper examines methodology for performing Bayesian inference sequentially on a sequence of posteriors on spaces of different dimensions. For this, we use sequential Monte Carlo samplers, introducing the innovation of using deterministic transformations to move particles effectively between target distributions with different dimensions. This approach, combined with adaptive methods, yields an extremely flexible and general algorithm for Bayesian model comparison that is suitable for use in applications where the acceptance rate in reversible jump Markov chain Monte Carlo is low. We use this approach on model comparison for mixture models, and for inferring coalescent trees sequentially, as data arrives.  相似文献   

3.
This paper focuses on interest rate models with regime switching and extends previous nonlinear threshold models by relaxing the assumption of a fixed number of regimes. Instead we suggest automatic model determination through Bayesian inference via the reversible jump Markov Chain Monte Carlo (MCMC) algorithm. Moreover, we allow the thresholds in the volatility to be driven not only by the interest rate but also by other economic factors. We illustrate our methodology by applying it to interest rates and other economic factors of the American economy.  相似文献   

4.
This paper focuses on interest rate models with regime switching and extends previous nonlinear threshold models by relaxing the assumption of a fixed number of regimes. Instead we suggest automatic model determination through Bayesian inference via the reversible jump Markov Chain Monte Carlo (MCMC) algorithm. Moreover, we allow the thresholds in the volatility to be driven not only by the interest rate but also by other economic factors. We illustrate our methodology by applying it to interest rates and other economic factors of the American economy.  相似文献   

5.
Reversible jump Markov chain Monte Carlo (RJMCMC) algorithms can be efficiently applied in Bayesian inference for hidden Markov models (HMMs), when the number of latent regimes is unknown. As for finite mixture models, when priors are invariant to the relabelling of the regimes, HMMs are unidentifiable in data fitting, because multiple ways to label the regimes can alternate during the MCMC iterations; this is the so-called label switching problem. HMMs with an unknown number of regimes are considered here and the goal of this paper is the comparison, both applied and theoretical, of five methods used for tackling label switching within a RJMCMC algorithm; they are: post-processing, partial reordering, permutation sampling, sampling from a Markov prior and rejection sampling. The five strategies we compare have been proposed mostly in the literature of finite mixture models and only two of them, i.e. rejection sampling and partial reordering, have been presented in RJMCMC algorithms for HMMs. We consider RJMCMC algorithms in which the parameters are updated by Gibbs sampling and the dimension of the model changes in split-and-merge and birth-and-death moves. Finally, an example illustrates and compares the five different methodologies.  相似文献   

6.
We consider hidden Markov models with an unknown number of regimes for the segmentation of the pixel intensities of digital images that consist of a small set of colours. New reversible jump Markov chain Monte Carlo algorithms to estimate both the dimension and the unknown parameters of the model are introduced. Parameters are updated by random walk Metropolis–Hastings moves, without updating the sequence of the hidden Markov chain. The segmentation (i.e. the estimation of the hidden regimes) is a further aim and is performed by means of a number of competing algorithms. We apply our Bayesian inference and segmentation tools to digital images, which are linearized through the Peano–Hilbert scan, and perform experiments and comparisons on both synthetic images and a real brain magnetic resonance image.  相似文献   

7.
We present a simulation methodology for Bayesian estimation of rate parameters in Markov jump processes arising for example in stochastic kinetic models. To handle the problem of missing components and measurement errors in observed data, we embed the Markov jump process into the framework of a general state space model. We do not use diffusion approximations. Markov chain Monte Carlo and particle filter type algorithms are introduced which allow sampling from the posterior distribution of the rate parameters and the Markov jump process also in data-poor scenarios. The algorithms are illustrated by applying them to rate estimation in a model for prokaryotic auto-regulation and the stochastic Oregonator, respectively.  相似文献   

8.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   

9.
Simulation-based inference for partially observed stochastic dynamic models is currently receiving much attention due to the fact that direct computation of the likelihood is not possible in many practical situations. Iterated filtering methodologies enable maximization of the likelihood function using simulation-based sequential Monte Carlo filters. Doucet et al. (2013) developed an approximation for the first and second derivatives of the log likelihood via simulation-based sequential Monte Carlo smoothing and proved that the approximation has some attractive theoretical properties. We investigated an iterated smoothing algorithm carrying out likelihood maximization using these derivative approximations. Further, we developed a new iterated smoothing algorithm, using a modification of these derivative estimates, for which we establish both theoretical results and effective practical performance. On benchmark computational challenges, this method beat the first-order iterated filtering algorithm. The method’s performance was comparable to a recently developed iterated filtering algorithm based on an iterated Bayes map. Our iterated smoothing algorithm and its theoretical justification provide new directions for future developments in simulation-based inference for latent variable models such as partially observed Markov process models.  相似文献   

10.
Combining the multivariate probit models with the multivariate partially linear single-index models, we propose new semiparametric latent variable models for multivariate ordinal response data. Based on the reversible jump Markov chain Monte Carlo technique, we develop a fully Bayesian method with free-knot splines to analyse the proposed models. To address the problem that the ordinary Gibbs sampler usually converges slowly, we make use of the partial-collapse and parameter-expansion techniques in our algorithm. The proposed methodology are demonstrated by simulated and real data examples.  相似文献   

11.
Approximate Bayesian computation (ABC) methods permit approximate inference for intractable likelihoods when it is possible to simulate from the model. However, they perform poorly for high-dimensional data and in practice must usually be used in conjunction with dimension reduction methods, resulting in a loss of accuracy which is hard to quantify or control. We propose a new ABC method for high-dimensional data based on rare event methods which we refer to as RE-ABC. This uses a latent variable representation of the model. For a given parameter value, we estimate the probability of the rare event that the latent variables correspond to data roughly consistent with the observations. This is performed using sequential Monte Carlo and slice sampling to systematically search the space of latent variables. In contrast, standard ABC can be viewed as using a more naive Monte Carlo estimate. We use our rare event probability estimator as a likelihood estimate within the pseudo-marginal Metropolis–Hastings algorithm for parameter inference. We provide asymptotics showing that RE-ABC has a lower computational cost for high-dimensional data than standard ABC methods. We also illustrate our approach empirically, on a Gaussian distribution and an application in infectious disease modelling.  相似文献   

12.
Latent feature models are a powerful tool for modeling data with globally-shared features. Nonparametric distributions over exchangeable sets of features, such as the Indian Buffet Process, offer modeling flexibility by letting the number of latent features be unbounded. However, current models impose implicit distributions over the number of latent features per data point, and these implicit distributions may not match our knowledge about the data. In this work, we demonstrate how the restricted Indian buffet process circumvents this restriction, allowing arbitrary distributions over the number of features in an observation. We discuss several alternative constructions of the model and apply the insights to develop Markov Chain Monte Carlo and variational methods for simulation and posterior inference.  相似文献   

13.
We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelization and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the suggested estimators, and provide central limit theorems with expressions for asymptotic variances. We demonstrate how our method can make use of SMC in the state space models context, using Laplace approximations and time-discretized diffusions. Our experimental results are promising and show that the IS-type approach can provide substantial gains relative to an analogous DA scheme, and is often competitive even without parallelization.  相似文献   

14.
This article is a contribution to the asymptotic inference on the parameters of a quite general class of stochastic models for the spread of epidemics developing in closed populations. Various epidemic models are contained within our framework, for instance, a stochastic version of the Kermack and McKendrick model and the SIS epidemic model. Each model belonging to this class, which consists in a family of discrete-time stochastic process, contains certain parameters to be estimated by means of martingale estimators. Some particular cases defined by means of Markov chains are included in our setting. The main aim of this work is to prove consistency and asymptotic normality of these estimators. Some hypothesis tests based on the main results are also shown.  相似文献   

15.
The bootstrap particle filter (BPF) is the cornerstone of many algorithms used for solving generally intractable inference problems with hidden Markov models. The long-term stability of the BPF arises from particle interactions that typically make parallel implementations of the BPF nontrivial. We propose a method whereby particle interaction is done in several stages. With the proposed method, full interaction can be accomplished even if we allow only pairwise communications between processing elements at each stage. We show that our method preserves the consistency and the long-term stability of the BPF, although our analysis suggests that the constraints on the stagewise interactions introduce errors leading to a lower convergence rate than standard Monte Carlo. The proposed method also suggests a new, more flexible, adaptive resampling scheme, which, according to our numerical experiments, is the method of choice, displaying a notable gain in efficiency in certain parallel computing scenarios.  相似文献   

16.
We propose a density-tempered marginalized sequential Monte Carlo (SMC) sampler, a new class of samplers for full Bayesian inference of general state-space models. The dynamic states are approximately marginalized out using a particle filter, and the parameters are sampled via a sequential Monte Carlo sampler over a density-tempered bridge between the prior and the posterior. Our approach delivers exact draws from the joint posterior of the parameters and the latent states for any given number of state particles and is thus easily parallelizable in implementation. We also build into the proposed method a device that can automatically select a suitable number of state particles. Since the method incorporates sample information in a smooth fashion, it delivers good performance in the presence of outliers. We check the performance of the density-tempered SMC algorithm using simulated data based on a linear Gaussian state-space model with and without misspecification. We also apply it on real stock prices using a GARCH-type model with microstructure noise.  相似文献   

17.
Approximate Bayesian computation (ABC) has become a popular technique to facilitate Bayesian inference from complex models. In this article we present an ABC approximation designed to perform biased filtering for a Hidden Markov Model when the likelihood function is intractable. We use a sequential Monte Carlo (SMC) algorithm to both fit and sample from our ABC approximation of the target probability density. This approach is shown to, empirically, be more accurate w.r.t.?the original filter than competing methods. The theoretical bias of our method is investigated; it is shown that the bias goes to zero at the expense of increased computational effort. Our approach is illustrated on a constrained sequential lasso for portfolio allocation to 15 constituents of the FTSE 100 share index.  相似文献   

18.
Zhang  Zhihua  Chan  Kap Luk  Wu  Yiming  Chen  Chibiao 《Statistics and Computing》2004,14(4):343-355
This paper is a contribution to the methodology of fully Bayesian inference in a multivariate Gaussian mixture model using the reversible jump Markov chain Monte Carlo algorithm. To follow the constraints of preserving the first two moments before and after the split or combine moves, we concentrate on a simplified multivariate Gaussian mixture model, in which the covariance matrices of all components share a common eigenvector matrix. We then propose an approach to the construction of the reversible jump Markov chain Monte Carlo algorithm for this model. Experimental results on several data sets demonstrate the efficacy of our algorithm.  相似文献   

19.
We discuss the development of dynamic factor models for multivariate financial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalizations of univariate stochastic volatility models and represent specific varieties of models recently discussed in the growing multivariate stochastic volatility literature. We discuss model fitting based on retrospective data and sequential analysis for forward filtering and short-term forecasting. Analyses are compared with results from the much simpler method of dynamic variance-matrix discounting that, for over a decade, has been a standard approach in applied financial econometrics. We study these models in analysis, forecasting, and sequential portfolio allocation for a selected set of international exchange-rate-return time series. Our goals are to understand a range of modeling questions arising in using these factor models and to explore empirical performance in portfolio construction relative to discount approaches. We report on our experiences and conclude with comments about the practical utility of structured factor models and on future potential model extensions.  相似文献   

20.
Fitting Gaussian Markov Random Fields to Gaussian Fields   总被引:3,自引:0,他引:3  
This paper discusses the following task often encountered in building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in some observed data, or consistent with prior knowledge. The Markov property is essential in designing computationally efficient Markov chain Monte Carlo algorithms to analyse such models. We argue that we can restate both tasks as that of fitting a GMRF to a prescribed stationary Gaussian field on a lattice when both local and global properties are important. We demonstrate that using the KullbackLeibler discrepancy often fails for this task, giving severely undesirable behaviour of the correlation function for lags outside the neighbourhood. We propose a new criterion that resolves this difficulty, and demonstrate that GMRFs with small neighbourhoods can approximate Gaussian fields surprisingly well even with long correlation lengths. Finally, we discuss implications of our findings for likelihood based inference for general Markov random fields when global properties are also important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号