首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
2.
With the ready availability of spatial databases and geographical information system software, statisticians are increasingly encountering multivariate modelling settings featuring associations of more than one type: spatial associations between data locations and associations between the variables within the locations. Although flexible modelling of multivariate point-referenced data has recently been addressed by using a linear model of co-regionalization, existing methods for multivariate areal data typically suffer from unnecessary restrictions on the covariance structure or undesirable dependence on the conditioning order of the variables. We propose a class of Bayesian hierarchical models for multivariate areal data that avoids these restrictions, permitting flexible and order-free modelling of correlations both between variables and across areal units. Our framework encompasses a rich class of multivariate conditionally autoregressive models that are computationally feasible via modern Markov chain Monte Carlo methods. We illustrate the strengths of our approach over existing models by using simulation studies and also offer a real data application involving annual lung, larynx and oesophageal cancer death-rates in Minnesota counties between 1990 and 2000.  相似文献   

3.
Basket trials evaluate a single drug targeting a single genetic variant in multiple cancer cohorts. Empirical findings suggest that treatment efficacy across baskets may be heterogeneous. Most modern basket trial designs use Bayesian methods. These methods require the prior specification of at least one parameter that permits information sharing across baskets. In this study, we provide recommendations for selecting a prior for scale parameters for adaptive basket trials by using Bayesian hierarchical modeling. Heterogeneity among baskets attracts much attention in basket trial research, and substantial heterogeneity challenges the basic assumption of exchangeability of Bayesian hierarchical approach. Thus, we also allowed each stratum-specific parameter to be exchangeable or nonexchangeable with similar strata by using data observed in an interim analysis. Through a simulation study, we evaluated the overall performance of our design based on statistical power and type I error rates. Our research contributes to the understanding of the properties of Bayesian basket trial designs.  相似文献   

4.
The authors discuss a general class of hierarchical ordinal regression models that includes both location and scale parameters, allows link functions to be selected adaptively as finite mixtures of normal cumulative distribution functions, and incorporates flexible correlation structures for the latent scale variables. Exploiting the well‐known correspondence between ordinal regression models and parametric ROC (Receiver Operating Characteristic) curves makes it possible to use a hierarchical ROC (HROC) analysis to study multilevel clustered data in diagnostic imaging studies. The authors present a Bayesian approach to model fitting using Markov chain Monte Carlo methods and discuss HROC applications to the analysis of data from two diagnostic radiology studies involving multiple interpreters.  相似文献   

5.
Recently, the field of multiple hypothesis testing has experienced a great expansion, basically because of the new methods developed in the field of genomics. These new methods allow scientists to simultaneously process thousands of hypothesis tests. The frequentist approach to this problem is made by using different testing error measures that allow to control the Type I error rate at a certain desired level. Alternatively, in this article, a Bayesian hierarchical model based on mixture distributions and an empirical Bayes approach are proposed in order to produce a list of rejected hypotheses that will be declared significant and interesting for a more detailed posterior analysis. In particular, we develop a straightforward implementation of a Gibbs sampling scheme where all the conditional posterior distributions are explicit. The results are compared with the frequentist False Discovery Rate (FDR) methodology. Simulation examples show that our model improves the FDR procedure in the sense that it diminishes the percentage of false negatives keeping an acceptable percentage of false positives.  相似文献   

6.
With rapid development of computing technology, Bayesian statistics have increasingly gained more attention in various areas of public health. However, the full potential of Bayesian sequential methods applied to vaccine safety surveillance has not yet been realized, despite acknowledged practical benefits and philosophical advantages of Bayesian statistics. In this paper, we describe how sequential analysis can be performed in a Bayesian paradigm in the field of vaccine safety. We compared the performance of the frequentist sequential method, specifically, Maximized Sequential Probability Ratio Test (MaxSPRT), and a Bayesian sequential method using simulations and a real world vaccine safety example. The performance is evaluated using three metrics: false positive rate, false negative rate, and average earliest time to signal. Depending on the background rate of adverse events, the Bayesian sequential method could significantly improve the false negative rate and decrease the earliest time to signal. We consider the proposed Bayesian sequential approach to be a promising alternative for vaccine safety surveillance.  相似文献   

7.
In this paper, we present different “frailty” models to analyze longitudinal data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. Assuming a CD4 counting data set in HIV-infected patients, we develop a hierarchical Bayesian analysis considering the different proposed models and using Markov Chain Monte Carlo methods. We also discuss some Bayesian discrimination aspects for the choice of the best model.  相似文献   

8.
A major recent development in statistics has been the use of fast computational methods of Markov chain Monte Carlo. These procedures allow Bayesian methods to be used in quite complex modelling situations. In this paper, we shall use a range of real data examples involving lapwings, shags, teal, dippers, and herring gulls, to illustrate the power and range of Bayesian techniques. The topics include: prior sensitivity; the use of reversible-jump MCMC for constructing model probabilities and comparing models, with particular reference to models with random effects; model-averaging; and the construction of Bayesian measures of goodness-of-fit. Throughout, there will be discussion of the practical aspects of the work - for instance explaining when and when not to use the BUGS package.  相似文献   

9.
A major recent development in statistics has been the use of fast computational methods of Markov chain Monte Carlo. These procedures allow Bayesian methods to be used in quite complex modelling situations. In this paper, we shall use a range of real data examples involving lapwings, shags, teal, dippers, and herring gulls, to illustrate the power and range of Bayesian techniques. The topics include: prior sensitivity; the use of reversible-jump MCMC for constructing model probabilities and comparing models, with particular reference to models with random effects; model-averaging; and the construction of Bayesian measures of goodness-of-fit. Throughout, there will be discussion of the practical aspects of the work - for instance explaining when and when not to use the BUGS package.  相似文献   

10.
There is considerable interest in understanding how factors such as time and geographic distance between isolates might influence the evolutionary direction of foot‐and‐mouth disease. Genetic differences between viruses can be measured as the proportion of nucleotides that differ for a given sequence or gene. We present a Bayesian hierarchical regression model for the statistical analysis of continuous data with sample space restricted to the interval (0, 1). The data are modelled using beta distributions with means that depend on covariates through a link function. We discuss methodology for: (i) the incorporation of informative prior information into an analysis; (ii) fitting the model using Markov chain Monte Carlo sampling; (iii) model selection using Bayes factors; and (iv) semiparametric beta regression using penalized splines. The model was applied to two different datasets.  相似文献   

11.
This paper explores properties of the E-Bayesian and hierarchical Bayesian estimations of the system reliability parameter. E-Bayesian estimation and hierarchical Bayesian estimation of Pascal distribution's parameter under two loss function, LINEX loss function and entropy loss function can be found. We obtained limits of that the E-Bayesian estimation and hierarchical Bayesian estimation are equal. A Monte Carlo simulation is used to compare performances of the two methods.  相似文献   

12.
We study how different prior assumptions on the spatially structured heterogeneity term of the convolution hierarchical Bayesian model for spatial disease data could affect the results of an ecological analysis when response and exposure exhibit a strong spatial pattern. We show that in this case the estimate of the regression parameter could be strongly biased, both by analyzing the association between lung cancer mortality and education level on a real dataset and by a simulation experiment. The analysis is based on a hierarchical Bayesian model with a time dependent covariate in which we allow for a latency period between exposure and mortality, with time and space random terms and misaligned exposure-disease data.  相似文献   

13.
This paper considers quantile regression models using an asymmetric Laplace distribution from a Bayesian point of view. We develop a simple and efficient Gibbs sampling algorithm for fitting the quantile regression model based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the resulting Gibbs sampler can be accomplished by sampling from either normal or generalized inverse Gaussian distribution. We also discuss some possible extensions of our approach, including the incorporation of a scale parameter, the use of double exponential prior, and a Bayesian analysis of Tobit quantile regression. The proposed methods are illustrated by both simulated and real data.  相似文献   

14.
We will pursue a Bayesian nonparametric approach in the hierarchical mixture modelling of lifetime data in two situations: density estimation, when the distribution is a mixture of parametric densities with a nonparametric mixing measure, and accelerated failure time (AFT) regression modelling, when the same type of mixture is used for the distribution of the error term. The Dirichlet process is a popular choice for the mixing measure, yielding a Dirichlet process mixture model for the error; as an alternative, we also allow the mixing measure to be equal to a normalized inverse-Gaussian prior, built from normalized inverse-Gaussian finite dimensional distributions, as recently proposed in the literature. Markov chain Monte Carlo techniques will be used to estimate the predictive distribution of the survival time, along with the posterior distribution of the regression parameters. A comparison between the two models will be carried out on the grounds of their predictive power and their ability to identify the number of components in a given mixture density.  相似文献   

15.
The Bayesian CART (classification and regression tree) approach proposed by Chipman, George and McCulloch (1998) entails putting a prior distribution on the set of all CART models and then using stochastic search to select a model. The main thrust of this paper is to propose a new class of hierarchical priors which enhance the potential of this Bayesian approach. These priors indicate a preference for smooth local mean structure, resulting in tree models which shrink predictions from adjacent terminal node towards each other. Past methods for tree shrinkage have searched for trees without shrinking, and applied shrinkage to the identified tree only after the search. By using hierarchical priors in the stochastic search, the proposed method searches for shrunk trees that fit well and improves the tree through shrinkage of predictions.  相似文献   

16.
In [7], a Bayesian network for analysis of mixed traces of DNA was presented using gamma distributions for modelling peak sizes in the electropherogram. It was demonstrated that the analysis was sensitive to the choice of a variance factor and hence this should be adapted to any new trace analysed. In this paper, we discuss how the variance parameter can be estimated by maximum likelihood to achieve this. The unknown proportions of DNA from each contributor can similarly be estimated by maximum likelihood jointly with the variance parameter. Furthermore, we discuss how to incorporate prior knowledge about the parameters in a Bayesian analysis. The proposed estimation methods are illustrated through a few examples of applications for calculating evidential value in casework and for mixture deconvolution.  相似文献   

17.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

18.
In this paper, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC) method for longitudinal data models with random effects. Under the assumption of error term subject to asymmetric Laplace distribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at τ-th level. We overcome the current computational limitations using two approaches. One is the general MCMC technique with Metropolis–Hastings algorithm and another is the Gibbs sampling from the full conditional distribution. These two methods outperform the traditional frequentist methods under a wide array of simulated data models and are flexible enough to easily accommodate changes in the number of random effects and in their assumed distribution. We apply the Gibbs sampling method to analyse a mouse growth data and some different conclusions from those in the literatures are obtained.  相似文献   

19.
The level set approach has proven widely successful in the study of inverse problems for interfaces, since its systematic development in the 1990s. Recently it has been employed in the context of Bayesian inversion, allowing for the quantification of uncertainty within the reconstruction of interfaces. However, the Bayesian approach is very sensitive to the length and amplitude scales in the prior probabilistic model. This paper demonstrates how the scale-sensitivity can be circumvented by means of a hierarchical approach, using a single scalar parameter. Together with careful consideration of the development of algorithms which encode probability measure equivalences as the hierarchical parameter is varied, this leads to well-defined Gibbs-based MCMC methods found by alternating Metropolis–Hastings updates of the level set function and the hierarchical parameter. These methods demonstrably outperform non-hierarchical Bayesian level set methods.  相似文献   

20.
Summary.  Alongside the development of meta-analysis as a tool for summarizing research literature, there is renewed interest in broader forms of quantitative synthesis that are aimed at combining evidence from different study designs or evidence on multiple parameters. These have been proposed under various headings: the confidence profile method, cross-design synthesis, hierarchical models and generalized evidence synthesis. Models that are used in health technology assessment are also referred to as representing a synthesis of evidence in a mathematical structure. Here we review alternative approaches to statistical evidence synthesis, and their implications for epidemiology and medical decision-making. The methods include hierarchical models, models informed by evidence on different functions of several parameters and models incorporating both of these features. The need to check for consistency of evidence when using these powerful methods is emphasized. We develop a rationale for evidence synthesis that is based on Bayesian decision modelling and expected value of information theory, which stresses not only the need for a lack of bias in estimates of treatment effects but also a lack of bias in assessments of uncertainty. The increasing reliance of governmental bodies like the UK National Institute for Clinical Excellence on complex evidence synthesis in decision modelling is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号