首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we focus on the general k-step step-stress accelerated life tests with Type-I censoring for two-parameter Weibull distributions based on the tampered failure rate (TFR) model. We get the optimum design for the tests under the criterion of the minimization of the asymptotic variance of the maximum likelihood estimate of the pth percentile of the lifetime under the normal operating conditions. Optimum test plans for the simple step-stress accelerated life tests under Type-I censoring are developed for the Weibull distribution and the exponential distribution in particular. Finally, an example is provided to illustrate the proposed design and a sensitivity analysis is conducted to investigate the robustness of the design.  相似文献   

2.
Battacharyya and Soejoeti (1989) proposed the tampered failure rate model for step-stress accelerated life testing. In this note, their model is generalized from the simple (2-step) step-stress setting to the multiple (k-step, k > 2) setting. For the parametric setting where the life distribution under constant stress is Weibull, maximum likelihood estimation is investigated and the situation where the different stress levels are equispaced is looked at.  相似文献   

3.
In this article, four basic models for step-stress accelerated life testing are introduced and compared: cumulative exposure model (CEM), linear cumulative exposure model (LCEM), tampered random variable model (TRVM), and tampered failure rate model (TFRM). Limitations of the four models are also introduced for better use of the models.  相似文献   

4.
In this paper we consider the more realistic aspect of accelerated life testing wherein the stress on an unfailed item is allowed to increase at a preassigned test time. Such tests are known as step-stress tests. Our approach is nonparametric in that we do not make any assumptions about the underlying distribution of life lengths. We introduce a model for step-stress testing which is based on the ideas of shock models and of wear processes. This model unifies and generalizes two previously proposed models for step-stress testing. We propose an estimator for the life distribution under use conditions stress and show that this estimator is strongly consistent.  相似文献   

5.
ABSTRACT

Based on the tampered failure rate model under the adaptive Type-II progressively hybrid censoring data, we discuss the maximum likelihood estimators of the unknown parameters and acceleration factors in the general step-stress accelerated life tests in this paper. We also construct the exact and unique confidence interval for the extended Weibull shape parameter. In the numerical analysis, we describe the simulation procedures to obtain the adaptive Type-II progressively hybrid censoring data in the step-stress accelerated life tests and present an experimental data to illustrate the performance of the estimators.  相似文献   

6.
In this article, we present the parameter inference in step-stress accelerated life tests under the tampered failure rate model with geometric distribution. We deal with Type-II censoring scheme involved in experimental data, and provide the maximum likelihood estimate and confidence interval of the parameters of interest. With the help of the Monte-Carlo simulation technique, a comparison of precision of the confidence limits is demonstrated for our method, the Bootstrap method, and the large-sample based procedure. The application of two industrial real datasets shows the proposed method efficiency and feasibility.  相似文献   

7.
By combining the progressive hybrid censoring with the step-stress partially accelerated lifetime test, we propose an adaptive step-stress partially accelerated lifetime test, which allows random changing of the number of step-stress levels according to the pre-fixed censoring number and time points. Thus, the time expenditure and economic cost of the test will be reduced greatly. Based on the Lindley-distributed tampered failure rate (TFR) model with masked system lifetime data, the BFGS method is introduced in the expectation maximization (EM) algorithm to obtain the maximum likelihood estimation (MLE), which overcomes the difficulties of the vague maximization procedure in the M-step. Asymptotic confidence intervals of components' distribution parameters are also investigated according to the missing information principle. As comparison, the Bayesian estimation and the highest probability density (HPD) credible intervals are obtained by using adaptive rejection sampling. Furthermore, the reliability of the system and components are estimated at a specified time under usual and severe operating conditions. Finally, a numerical simulation example is presented to illustrate the performance of our proposed method.  相似文献   

8.
By running the life tests at higher stress levels than normal operating conditions, accelerated life testing quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant-stress testing, a unit is tested at a fixed stress level until failure or the termination time point of the test, while step-stress testing allows the experimenter to gradually increase the stress levels at some pre-fixed time points during the test. In this article, the optimal k-level constant-stress and step-stress accelerated life tests are compared for the exponential failure data under Type-I censoring. The objective is to quantify the advantage of using the step-stress testing relative to the constant-stress one. A log-linear relationship between the mean lifetime parameter and stress level is assumed and the cumulative exposure model holds for the effect of changing stress in step-stress testing. The optimal design point is then determined under C-optimality, D-optimality, and A-optimality criteria. The efficiency of step-stress testing compared to constant-stress testing is discussed in terms of the ratio of optimal objective functions based on the information matrix.  相似文献   

9.
Recently, progressively hybrid censoring schemes have become quite popular in life testing and reliability studies. In this article, the point and interval maximum-likelihood estimations of Weibull distribution parameters and the acceleration factor are considered. The estimation process is performed under Type-I progressively hybrid censored data for a step-stress partially accelerated test model. The biases and mean square errors of the maximum-likelihood estimators are computed to assess their performances in the presence of censoring developed in this article through a Monte Carlo simulation study.  相似文献   

10.
The cumulative exposure model (CEM) is a commonly used statistical model utilized to analyze data from a step-stress accelerated life testing which is a special class of accelerated life testing (ALT). In practice, researchers conduct ALT to: (1) determine the effects of extreme levels of stress factors (e.g., temperature) on the life distribution, and (2) to gain information on the parameters of the life distribution more rapidly than under normal operating (or environmental) conditions. In literature, researchers assume that the CEM is from well-known distributions, such as the Weibull family. This study, on the other hand, considers a p-step-stress model with q stress factors from the two-parameter Birnbaum-Saunders distribution when there is a time constraint on the duration of the experiment. In this comparison paper, we consider different frameworks to numerically compute the point estimation for the unknown parameters of the CEM using the maximum likelihood theory. Each framework implements at least one optimization method; therefore, numerical examples and extensive Monte Carlo simulations are considered to compare and numerically examine the performance of the considered estimation frameworks.  相似文献   

11.
The step-stress model is a special case of accelerated life testing that allows for testing of units under different levels of stress with changes occurring at various intermediate stages of the experiment. Interest then lies on inference for the mean lifetime at each stress level. All step-stress models discussed so far in the literature are based on a single experiment. For the situation when data have been collected from different experiments wherein all the test units had been exposed to the same levels of stress but with possibly different points of change of stress, we introduce a model that combines the different experiments and facilitates a meta-analysis for the estimation of the mean lifetimes. We then discuss in detail the likelihood inference for the case of simple step-stress experiments under exponentially distributed lifetimes with Type-II censoring.  相似文献   

12.
Based on a generalized cumulative damage approach with a stochastic process describing degradation, new accelerated life test models are presented in which both observed failures and degradation measures can be considered for parametric inference of system lifetime. Incorporating an accelerated test variable, we provide several new accelerated degradation models for failure based on the geometric Brownian motion or gamma process. It is shown that in most cases, our models for failure can be approximated closely by accelerated test versions of Birnbaum–Saunders and inverse Gaussian distributions. Estimation of model parameters and a model selection procedure are discussed, and two illustrative examples using real data for carbon-film resistors and fatigue crack size are presented.  相似文献   

13.
This article aims to estimate the parameters of the Weibull distribution in step-stress partially accelerated life tests under multiply censored data. The step partially acceleration life test is that all test units are first run simultaneously under normal conditions for a pre-specified time, and the surviving units are then run under accelerated conditions until a predetermined censoring time. The maximum likelihood estimates are used to obtaining the parameters of the Weibull distribution and the acceleration factor under multiply censored data. Additionally, the confidence intervals for the estimators are obtained. Simulation results show that the maximum likelihood estimates perform well in most cases in terms of the mean bias, errors in the root mean square and the coverage rate. An example is used to illustrate the performance of the proposed approach.  相似文献   

14.
Various types of failure, censored and accelerated life tests, are commonly employed for life testing in some manufacturing industries and products that are highly reliable. In this article, we consider the tampered failure rate model as one of such types that relate the distribution under use condition to the distribution under accelerated condition. It is assumed that the lifetimes of products under use condition have generalized Pareto distribution as a lifetime model. Some estimation methods such as graphical, moments, probability weighted moments, and maximum likelihood estimation methods for the parameters are discussed based on progressively type-I censored data. The determination of optimal stress change time is discussed under two different criteria of optimality. Finally, a Monte Carlo simulation study is carried out to examine the performance of the estimation methods and the optimality criteria.  相似文献   

15.
Prediction of recruitment in clinical trials has been a challenging task. Many methods have been studied, including models based on Poisson process and its large sample approximation by Brownian motion (BM); however, when the independent incremental structure is violated for BM model, we could use fractional Brownian motion to model and approximate the underlying Poisson processes with random rates. In this paper, fractional Brownian motion (FBM) is considered for such conditions and compared to BM model with illustrated examples from different trials and simulations.  相似文献   

16.
Conditions for the coincidence of the TFR,TRV and CE models   总被引:11,自引:1,他引:10  
Bhattacharyya and Soejoeti (1989) put forward the tampered failure rate model (TFR Model) for step-stress Accelerated Life Tests(ALT). This paper studies the conditions for the coincidence of the TRV, TFR and CE models, gives the definitions of the coincidence, offers a proof of the necessary and sufficient condition for the coincidence of the TRV and TFR models in [1], and points out a mistake that appeared in the counterexample provided in [3].  相似文献   

17.
Some traditional life tests result in no or very few failures by the end of test. In such cases, one approach is to do life testing at higher-than-usual stress conditions in order to obtain failures quickly. This paper discusses a k-level step-stress accelerated life test under type I progressive group-censoring with random removals. An exponential failure time distribution with mean life that is a log-linear function of stress and a cumulative exposure model are considered. We derive the maximum likelihood estimators of the model parameters and establish the asymptotic properties of the estimators. We investigate four selection criteria which enable us to obtain the optimum test plans. One is to minimize the asymptotic variance of the maximum likelihood estimator of the logarithm of the mean lifetime at use-condition, and the other three criteria are to maximize the determinant, trace and the smallest eigenvalue of Fisher's information matrix. Some numerical studies are discussed to illustrate the proposed criteria.  相似文献   

18.
In reliability and life-testing experiments, the researcher is often interested in the effects of extreme or varying stress factors such as temperature, voltage and load on the lifetimes of experimental units. Step-stress test, which is a special class of accelerated life-tests, allows the experimenter to increase the stress levels at fixed times during the experiment in order to obtain information on the parameters of the life distributions more quickly than under normal operating conditions. In this paper, we consider the simple step-stress model under the exponential distribution when the available data are Type-I hybrid censored. We derive the maximum likelihood estimators (MLEs) of the parameters assuming a cumulative exposure model with lifetimes being exponentially distributed. The exact distributions of the MLEs of parameters are obtained through the use of conditional moment generating functions. We also derive confidence intervals for the parameters using these exact distributions, asymptotic distributions of the MLEs and the parametric bootstrap methods, and assess their performance through a Monte Carlo simulation study. Finally, we present two examples to illustrate all the methods of inference discussed here.  相似文献   

19.
In order to quickly extract information on the life of a product, accelerated life-tests are usually employed. In this article, we discuss a k-stage step-stress accelerated life-test with M-stress variables when the underlying data are progressively Type-I group censored. The life-testing model assumed is an exponential distribution with a link function that relates the failure rate and the stress variables in a linear way under the Box–Cox transformation, and a cumulative exposure model for modelling the effect of stress changes. The classical maximum likelihood method as well as a fully Bayesian method based on the Markov chain Monte Carlo (MCMC) technique is developed for inference on all the parameters of this model. Numerical examples are presented to illustrate all the methods of inference developed here, and a comparison of the ML and Bayesian methods is also carried out.  相似文献   

20.
ABSTRACT

This paper presents methods for constructing prediction limits for a step-stress model in accelerated life testing. An exponential life distribution with a mean that is a log-linear function of stress, and a cumulative exposure model are assumed. Two prediction problems are discussed. One concerns the prediction of the life at a design stress, and the other concerns the prediction of a future life during the step-stress testing. Both predictions require the knowledge of some model parameters. When estimates for the model parameters are available, a calibration method based on simulations is proposed for correcting the prediction intervals (regions) obtained by treating the parameter estimates as the true parameter values. Finally, a numerical example is given to illustrate the prediction procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号