共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, we extend the censored linear regression model with normal errors to Student-t errors. A simple EM-type algorithm for iteratively computing maximum-likelihood estimates of the parameters is presented. To examine the performance of the proposed model, case-deletion and local influence techniques are developed to show its robust aspect against outlying and influential observations. This is done by the analysis of the sensitivity of the EM estimates under some usual perturbation schemes in the model or data and by inspecting some proposed diagnostic graphics. The efficacy of the method is verified through the analysis of simulated data sets and modelling a real data set first analysed under normal errors. The proposed algorithm and methods are implemented in the R package CensRegMod. 相似文献
3.
In many studies, the data collected are subject to some upper and lower detection limits. Hence, the responses are either left or right censored. A complication arises when these continuous measures present heavy tails and asymmetrical behavior; simultaneously. For such data structures, we propose a robust-censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows us to estimate the parameters of interest easily and quickly, obtaining as a byproducts the standard errors, predictions of unobservable values of the response and the log-likelihood function. The proposed methods are illustrated through real data applications and several simulation studies. 相似文献
4.
Quantile regression (QR) is a natural alternative for depicting the impact of covariates on the conditional distributions of a outcome variable instead of the mean. In this paper, we investigate Bayesian regularized QR for the linear models with autoregressive errors. LASSO-penalized type priors are forced on regression coefficients and autoregressive parameters of the model. Gibbs sampler algorithm is employed to draw the full posterior distributions of unknown parameters. Finally, the proposed procedures are illustrated by some simulation studies and applied to a real data analysis of the electricity consumption. 相似文献
5.
In this article, we are concerned with detecting the true structure of a functional polynomial regression with autoregressive (AR) errors. The first issue is to detect which orders of the polynomial are significant in functional polynomial regression. The second issue is to detect which orders of the AR process in the AR errors are significant. We propose a shrinkage method to deal with the two problems: polynomial order selection and autoregressive order selection. Simulation studies demonstrate that the new method can identify the true structure. One empirical example is also presented to illustrate the usefulness of our method. 相似文献
6.
《Journal of Statistical Computation and Simulation》2012,82(10):1281-1296
For longitudinal time series data, linear mixed models that contain both random effects across individuals and first-order autoregressive errors within individuals may be appropriate. Some statistical diagnostics based on the models under a proposed elliptical error structure are developed in this work. It is well known that the class of elliptical distributions offers a more flexible framework for modelling since it contains both light- and heavy-tailed distributions. Iterative procedures for the maximum-likelihood estimates of the model parameters are presented. Score tests for the presence of autocorrelation and the homogeneity of autocorrelation coefficients among individuals are constructed. The properties of test statistics are investigated through Monte Carlo simulations. The local influence method for the models is also given. The analysed results of a real data set illustrate the values of the models and diagnostic statistics. 相似文献
7.
Normality and independence of error terms are typical assumptions for partial linear models. However, these assumptions may be unrealistic in many fields, such as economics, finance and biostatistics. In this paper, a Bayesian analysis for partial linear model with first-order autoregressive errors belonging to the class of the scale mixtures of normal distributions is studied in detail. The proposed model provides a useful generalization of the symmetrical linear regression model with independent errors, since the distribution of the error term covers both correlated and thick-tailed distributions, and has a convenient hierarchical representation allowing easy implementation of a Markov chain Monte Carlo scheme. In order to examine the robustness of the model against outlying and influential observations, a Bayesian case deletion influence diagnostics based on the Kullback–Leibler (K–L) divergence is presented. The proposed method is applied to monthly and daily returns of two Chilean companies. 相似文献
8.
《Journal of the Korean Statistical Society》2014,43(4):513-530
This paper considers a problem of variable selection in quantile regression with autoregressive errors. Recently, Wu and Liu (2009) investigated the oracle properties of the SCAD and adaptive-LASSO penalized quantile regressions under non identical but independent error assumption. We further relax the error assumptions so that the regression model can hold autoregressive errors, and then investigate theoretical properties for our proposed penalized quantile estimators under the relaxed assumption. Optimizing the objective function is often challenging because both quantile loss and penalty functions may be non-differentiable and/or non-concave. We adopt the concept of pseudo data by Oh et al. (2007) to implement a practical algorithm for the quantile estimate. In addition, we discuss the convergence property of the proposed algorithm. The performance of the proposed method is compared with those of the majorization-minimization algorithm (Hunter and Li, 2005) and the difference convex algorithm (Wu and Liu, 2009) through numerical and real examples. 相似文献
9.
Juan Carlos Pardo-Fernández Ingrid Van Keilegom Wenceslao González-Manteiga 《Revue canadienne de statistique》2007,35(2):249-264
The authors propose a goodness-of-fit test for parametric regression models when the response variable is right-censored. Their test compares an estimation of the error distribution based on parametric residuals to another estimation relying on nonparametric residuals. They call on a bootstrap mechanism in order to approximate the critical values of tests based on Kolmogorov-Smirnov and Cramér-von Mises type statistics. They also present the results of Monte Carlo simulations and use data from a study about quasars to illustrate their work. 相似文献
10.
We consider approximate Bayesian inference about scalar parameters of linear regression models with possible censoring. A second-order expansion of their Laplace posterior is seen to have a simple and intuitive form for logconcave error densities with nondecreasing hazard functions. The accuracy of the approximations is assessed for normal and Gumbel errors when the number of regressors increases with sample size. Perturbations of the prior and the likelihood are seen to be easily accommodated within our framework. Links with the work of DiCiccio et al. (1990) and Viveros and Sprott (1987) extend the applicability of our results to conditional frequentist inference based on likelihood-ratio statistics. 相似文献
11.
The authors give easy‐to‐check sufficient conditions for the geometric ergodicity and the finiteness of the moments of a random process xt = ?(xt‐1,…, xt‐p) + ?tσ(xt‐1,…, xt‐q) in which ?: Rp → R, σ Rq → R and (?t) is a sequence of independent and identically distributed random variables. They deduce strong mixing properties for this class of nonlinear autoregressive models with changing conditional variances which includes, among others, the ARCH(p), the AR(p)‐ARCH(p), and the double‐threshold autoregressive models. 相似文献
12.
ABSTRACTA variable selection procedure based on least absolute deviation (LAD) estimation and adaptive lasso (LAD-Lasso for short) is proposed for median regression models with doubly censored data. The proposed procedure can select significant variables and estimate the parameters simultaneously, and the resulting estimators enjoy the oracle property. Simulation results show that the proposed method works well. 相似文献
13.
Cibele M. Russo Gilberto A. Paula Francisco José A. Cysneiros Reiko Aoki 《Journal of applied statistics》2012,39(5):1049-1067
In this paper, we propose nonlinear elliptical models for correlated data with heteroscedastic and/or autoregressive structures. Our aim is to extend the models proposed by Russo et al. 22 by considering a more sophisticated scale structure to deal with variations in data dispersion and/or a possible autocorrelation among measurements taken throughout the same experimental unit. Moreover, to avoid the possible influence of outlying observations or to take into account the non-normal symmetric tails of the data, we assume elliptical contours for the joint distribution of random effects and errors, which allows us to attribute different weights to the observations. We propose an iterative algorithm to obtain the maximum-likelihood estimates for the parameters and derive the local influence curvatures for some specific perturbation schemes. The motivation for this work comes from a pharmacokinetic indomethacin data set, which was analysed previously by Bocheng and Xuping 1 under normality. 相似文献
14.
Aldo M. Garay Heleno Bolfarine Celso R.B. Cabral 《Journal of applied statistics》2015,42(12):2694-2714
As is the case of many studies, the data collected are limited and an exact value is recorded only if it falls within an interval range. Hence, the responses can be either left, interval or right censored. Linear (and nonlinear) regression models are routinely used to analyze these types of data and are based on normality assumptions for the errors terms. However, those analyzes might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear regression models by replacing the Gaussian assumptions for the random errors with scale mixtures of normal (SMN) distributions. The SMN is an attractive class of symmetric heavy-tailed densities that includes the normal, Student-t, Pearson type VII, slash and the contaminated normal distributions, as special cases. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo algorithm is introduced to carry out posterior inference. A new hierarchical prior distribution is suggested for the degrees of freedom parameter in the Student-t distribution. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measure. The proposed Bayesian methods are implemented in the R package BayesCR. The newly developed procedures are illustrated with applications using real and simulated data. 相似文献
15.
In linear regression the structure of the hat matrix plays an important part in regression diagnostics. In this note we investigate the properties of the hat matrix for regression with censored responses in the presence of one or more explanatory variables observed without censoring. The censored points in the scatterplot are renovated to positions had they been observed without censoring in a renovation process based on Buckley-James censored regression estimators. This allows natural links to be established with the structure of ordinary least squares estimators. In particular, we show that the renovated hat matrix may be partitioned in a manner which assists in deciding whether further explanatory variables should be added to the linear model. The added variable plot for regression with censored data is developed as a diagnostic tool for this decision process. 相似文献
16.
Daniel C. F. Guzmn Clcio S. Ferreira Camila B. Zeller 《Journal of applied statistics》2021,48(16):3060
A special source of difficulty in the statistical analysis is the possibility that some subjects may not have a complete observation of the response variable. Such incomplete observation of the response variable is called censoring. Censorship can occur for a variety of reasons, including limitations of measurement equipment, design of the experiment, and non-occurrence of the event of interest until the end of the study. In the presence of censoring, the dependence of the response variable on the explanatory variables can be explored through regression analysis. In this paper, we propose to examine the censorship problem in context of the class of asymmetric, i.e., we have proposed a linear regression model with censored responses based on skew scale mixtures of normal distributions. We develop a Monte Carlo EM (MCEM) algorithm to perform maximum likelihood inference of the parameters in the proposed linear censored regression models with skew scale mixtures of normal distributions. The MCEM algorithm has been discussed with an emphasis on the skew-normal, skew Student-t-normal, skew-slash and skew-contaminated normal distributions. To examine the performance of the proposed method, we present some simulation studies and analyze a real dataset. 相似文献
17.
In this article, we propose two novel diagnostic measures for the deletion of influential observations for regression parameters in the setting of generalized linear models. The proposed diagnostic methods are capable for detecting the influential observations under model misspecification, as long as the true underlying distributions have finite second moments.More specifically, it is demonstrated that the Poisson likelihood function can be properly adjusted to become asymptotically valid for practically all underlying discrete distributions. The adjusted Poisson regression model that achieves the robustness property is presented. Simulation studies and an illustration are performed to demonstrate the efficacy of the two novel diagnostic procedures. 相似文献
18.
This paper develops a nonparametric model of the relationship between survival S and a dichotomous random variable X under the order constraint that P(X=1|S=s) is increasing (or decreasing) with s. The estimation procedure, called isotonic regression, has been studied in some depth for the case of uncensored data, but we give a methodology which is appropriate in the more general context of right, left, and interval censored data. An E-M Algorithm (Dempster et. al., 1977) is used for maximum likelihood estimation. 相似文献
19.
In this work, we develop some diagnostics for nonlinear regression model with scale mixtures of skew-normal (SMSN) and first-order autoregressive errors. The SMSN distribution class covers symmetric as well as asymmetric and heavy-tailed distributions, which offers a more flexible framework for modelling. Maximum-likelihood (ML) estimates are computed via an expectation–maximization-type algorithm. Local influence diagnostics and score test for the correlation are also derived. The performances of the ML estimates and the test statistic are investigated through Monte Carlo simulations. Finally, a real data set is used to illustrate our diagnostic methods. 相似文献
20.
Linear regression models are useful statistical tools to analyze data sets in different fields. There are several methods to estimate the parameters of a linear regression model. These methods usually perform under normally distributed and uncorrelated errors. If error terms are correlated the Conditional Maximum Likelihood (CML) estimation method under normality assumption is often used to estimate the parameters of interest. The CML estimation method is required a distributional assumption on error terms. However, in practice, such distributional assumptions on error terms may not be plausible. In this paper, we propose to estimate the parameters of a linear regression model with autoregressive error term using Empirical Likelihood (EL) method, which is a distribution free estimation method. A small simulation study is provided to evaluate the performance of the proposed estimation method over the CML method. The results of the simulation study show that the proposed estimators based on EL method are remarkably better than the estimators obtained from CML method in terms of mean squared errors (MSE) and bias in almost all the simulation configurations. These findings are also confirmed by the results of the numerical and real data examples. 相似文献