首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with parameter estimation in the Cox proportional hazards model when covariates are measured with error. We consider both the classical additive measurement error model and a more general model which represents the mis-measured version of the covariate as an arbitrary linear function of the true covariate plus random noise. Only moment conditions are imposed on the distributions of the covariates and measurement error. Under the assumption that the covariates are measured precisely for a validation set, we develop a class of estimating equations for the vector-valued regression parameter by correcting the partial likelihood score function. The resultant estimators are proven to be consistent and asymptotically normal with easily estimated variances. Furthermore, a corrected version of the Breslow estimator for the cumulative hazard function is developed, which is shown to be uniformly consistent and, upon proper normalization, converges weakly to a zero-mean Gaussian process. Simulation studies indicate that the asymptotic approximations work well for practical sample sizes. The situation in which replicate measurements (instead of a validation set) are available is also studied.  相似文献   

2.
The estimation of the covariance matrix is important in the analysis of bivariate longitudinal data. A good estimator for the covariance matrix can improve the efficiency of the estimators of the mean regression coefficients. Furthermore, the covariance estimation itself is also of interest, but it is a challenging job to model the covariance matrix of bivariate longitudinal data due to the complex structure and positive definite constraint. In addition, most of existing approaches are based on the maximum likelihood, which is very sensitive to outliers or heavy-tail error distributions. In this article, an adaptive robust estimation method is proposed for bivariate longitudinal data. Unlike the existing likelihood-based methods, the proposed method can adapt to different error distributions. Specifically, at first, we utilize the modified Cholesky block decomposition to parameterize the covariance matrices. Secondly, we apply the bounded Huber's score function to develop a set of robust generalized estimating equations to estimate the parameters both in the mean and the covariance models simultaneously. A data-driven approach is presented to select the parameter c in the Huber's score function, which can ensure that the proposed method is robust and efficient. A simulation study and a real data analysis are conducted to illustrate the robustness and efficiency of the proposed approach.  相似文献   

3.
Regression calibration is a simple method for estimating regression models when covariate data are missing for some study subjects. It consists in replacing an unobserved covariate by an estimator of its conditional expectation given available covariates. Regression calibration has recently been investigated in various regression models such as the linear, generalized linear, and proportional hazards models. The aim of this paper is to investigate the appropriateness of this method for estimating the stratified Cox regression model with missing values of the covariate defining the strata. Despite its practical relevance, this problem has not yet been discussed in the literature. Asymptotic distribution theory is developed for the regression calibration estimator in this setting. A simulation study is also conducted to investigate the properties of this estimator.  相似文献   

4.
In this article, we propose a new empirical likelihood method for linear regression analysis with a right censored response variable. The method is based on the synthetic data approach for censored linear regression analysis. A log-empirical likelihood ratio test statistic for the entire regression coefficients vector is developed and we show that it converges to a standard chi-squared distribution. The proposed method can also be used to make inferences about linear combinations of the regression coefficients. Moreover, the proposed empirical likelihood ratio provides a way to combine different normal equations derived from various synthetic response variables. Maximizing this empirical likelihood ratio yields a maximum empirical likelihood estimator which is asymptotically equivalent to the solution of the estimating equation that are optimal linear combination of the original normal equations. It improves the estimation efficiency. The method is illustrated by some Monte Carlo simulation studies as well as a real example.  相似文献   

5.
In longitudinal data analysis, efficient estimation of regression coefficients requires a correct specification of certain covariance structure, and efficient estimation of covariance matrix requires a correct specification of mean regression model. In this article, we propose a general semiparametric model for the mean and the covariance simultaneously using the modified Cholesky decomposition. A regression spline-based approach within the framework of generalized estimating equations is proposed to estimate the parameters in the mean and the covariance. Under regularity conditions, asymptotic properties of the resulting estimators are established. Extensive simulation is conducted to investigate the performance of the proposed estimator and in the end a real data set is analysed using the proposed approach.  相似文献   

6.
Semiparametric transformation models provide flexible regression models for survival analysis, including the Cox proportional hazards and the proportional odds models as special cases. We consider the application of semiparametric transformation models in case-cohort studies, where the covariate data are observed only on cases and on a subcohort randomly sampled from the full cohort. We first propose an approximate profile likelihood approach with full-cohort data, which amounts to the pseudo-partial likelihood approach of Zucker [2005. A pseudo-partial likelihood method for semiparametric survival regression with covariate errors. J. Amer. Statist. Assoc. 100, 1264–1277]. Simulation results show that our proposal is almost as efficient as the nonparametric maximum likelihood estimator. We then extend this approach to the case-cohort design, applying the Horvitz–Thompson weighting method to the estimating equations from the approximated profile likelihood. Two levels of weights can be utilized to achieve unbiasedness and to gain efficiency. The resulting estimator has a closed-form asymptotic covariance matrix, and is found in simulations to be substantially more efficient than the estimator based on martingale estimating equations. The extension to left-truncated data will be discussed. We illustrate the proposed method on data from a cardiovascular risk factor study conducted in Taiwan.  相似文献   

7.
Simple nonparametric estimates of the conditional distribution of a response variable given a covariate are often useful for data exploration purposes or to help with the specification or validation of a parametric or semi-parametric regression model. In this paper we propose such an estimator in the case where the response variable is interval-censored and the covariate is continuous. Our approach consists in adding weights that depend on the covariate value in the self-consistency equation proposed by Turnbull (J R Stat Soc Ser B 38:290–295, 1976), which results in an estimator that is no more difficult to implement than Turnbull’s estimator itself. We show the convergence of our algorithm and that our estimator reduces to the generalized Kaplan–Meier estimator (Beran, Nonparametric regression with randomly censored survival data, 1981) when the data are either complete or right-censored. We demonstrate by simulation that the estimator, bootstrap variance estimation and bandwidth selection (by rule of thumb or cross-validation) all perform well in finite samples. We illustrate the method by applying it to a dataset from a study on the incidence of HIV in a group of female sex workers from Kinshasa.  相似文献   

8.
In this article, we propose a flexible parametric (FP) approach for adjusting for covariate measurement errors in regression that can accommodate replicated measurements on the surrogate (mismeasured) version of the unobserved true covariate on all the study subjects or on a sub-sample of the study subjects as error assessment data. We utilize the general framework of the FP approach proposed by Hossain and Gustafson in 2009 for adjusting for covariate measurement errors in regression. The FP approach is then compared with the existing non-parametric approaches when error assessment data are available on the entire sample of the study subjects (complete error assessment data) considering covariate measurement error in a multiple logistic regression model. We also developed the FP approach when error assessment data are available on a sub-sample of the study subjects (partial error assessment data) and investigated its performance using both simulated and real life data. Simulation results reveal that, in comparable situations, the FP approach performs as good as or better than the competing non-parametric approaches in eliminating the bias that arises in the estimated regression parameters due to covariate measurement errors. Also, it results in better efficiency of the estimated parameters. Finally, the FP approach is found to perform adequately well in terms of bias correction, confidence coverage, and in achieving appropriate statistical power under partial error assessment data.  相似文献   

9.
We consider statistical inference of unknown parameters in estimating equations (EEs) when some covariates have nonignorably missing values, which is quite common in practice but has rarely been discussed in the literature. When an instrument, a fully observed covariate vector that helps identifying parameters under nonignorable missingness, is available, the conditional distribution of the missing covariates given other covariates can be estimated by the pseudolikelihood method of Zhao and Shao [(2015), ‘Semiparametric pseudo likelihoods in generalised linear models with nonignorable missing data’, Journal of the American Statistical Association, 110, 1577–1590)] and be used to construct unbiased EEs. These modified EEs then constitute a basis for valid inference by empirical likelihood. Our method is applicable to a wide range of EEs used in practice. It is semiparametric since no parametric model for the propensity of missing covariate data is assumed. Asymptotic properties of the proposed estimator and the empirical likelihood ratio test statistic are derived. Some simulation results and a real data analysis are presented for illustration.  相似文献   

10.
In this paper, we consider improved estimating equations for semiparametric partial linear models (PLM) for longitudinal data, or clustered data in general. We approximate the non‐parametric function in the PLM by a regression spline, and utilize quadratic inference functions (QIF) in the estimating equations to achieve a more efficient estimation of the parametric part in the model, even when the correlation structure is misspecified. Moreover, we construct a test which is an analogue to the likelihood ratio inference function for inferring the parametric component in the model. The proposed methods perform well in simulation studies and real data analysis conducted in this paper.  相似文献   

11.
This paper discusses regression analysis of panel count data with dependent observation and dropout processes. For the problem, a general mean model is presented that can allow both additive and multiplicative effects of covariates on the underlying point process. In addition, the proportional rates model and the accelerated failure time model are employed to describe possible covariate effects on the observation process and the dropout or follow‐up process, respectively. For estimation of regression parameters, some estimating equation‐based procedures are developed and the asymptotic properties of the proposed estimators are established. In addition, a resampling approach is proposed for estimating a covariance matrix of the proposed estimator and a model checking procedure is also provided. Results from an extensive simulation study indicate that the proposed methodology works well for practical situations, and it is applied to a motivating set of real data.  相似文献   

12.
In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single‐index models for longitudinal data that may be unbalanced. In particular, a new three‐stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resulting estimators properly account for the within‐subject correlation. We show that the parameter estimators are asymptotically semiparametrically efficient. We also show that the asymptotic variance of the link function estimator is minimized when the working error covariance matrices are correctly specified. The new estimators are more efficient than estimators in the existing literature. These asymptotic results are obtained without assuming normality. The finite‐sample performance of the proposed method is demonstrated by simulation studies. In addition, two real‐data examples are analyzed to illustrate the methodology.  相似文献   

13.
Biao Zhang 《Statistics》2016,50(5):1173-1194
Missing covariate data occurs often in regression analysis. We study methods for estimating the regression coefficients in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866] on regression analyses with missing covariates, in which they pioneered the use of two working models, the working propensity score model and the working conditional score model. A recent approach to missing covariate data analysis is the empirical likelihood method of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503], which effectively combines unbiased estimating equations. In this paper, we consider an alternative likelihood approach based on the full likelihood of the observed data. This full likelihood-based method enables us to generate estimators for the vector of the regression coefficients that are (a) asymptotically equivalent to those of Qin et al. [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the working propensity score model is correctly specified, and (b) doubly robust, like the augmented inverse probability weighting (AIPW) estimators of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Am Statist Assoc. 1994;89:846–866]. Thus, the proposed full likelihood-based estimators improve on the efficiency of the AIPW estimators when the working propensity score model is correct but the working conditional score model is possibly incorrect, and also improve on the empirical likelihood estimators of Qin, Zhang and Leung [Empirical likelihood in missing data problems. J Amer Statist Assoc. 2009;104:1492–1503] when the reverse is true, that is, the working conditional score model is correct but the working propensity score model is possibly incorrect. In addition, we consider a regression method for estimation of the regression coefficients when the working conditional score model is correctly specified; the asymptotic variance of the resulting estimator is no greater than the semiparametric variance bound characterized by the theory of Robins et al. [Estimation of regression coefficients when some regressors are not always observed. J Amer Statist Assoc. 1994;89:846–866]. Finally, we compare the finite-sample performance of various estimators in a simulation study.  相似文献   

14.
We consider a random effects quantile regression analysis of clustered data and propose a semiparametric approach using empirical likelihood. The random regression coefficients are assumed independent with a common mean, following parametrically specified distributions. The common mean corresponds to the population-average effects of explanatory variables on the conditional quantile of interest, while the random coefficients represent cluster specific deviations in the covariate effects. We formulate the estimation of the random coefficients as an estimating equations problem and use empirical likelihood to incorporate the parametric likelihood of the random coefficients. A likelihood-like statistical criterion function is yield, which we show is asymptotically concave in a neighborhood of the true parameter value and motivates its maximizer as a natural estimator. We use Markov Chain Monte Carlo (MCMC) samplers in the Bayesian framework, and propose the resulting quasi-posterior mean as an estimator. We show that the proposed estimator of the population-level parameter is asymptotically normal and the estimators of the random coefficients are shrunk toward the population-level parameter in the first order asymptotic sense. These asymptotic results do not require Gaussian random effects, and the empirical likelihood based likelihood-like criterion function is free of parameters related to the error densities. This makes the proposed approach both flexible and computationally simple. We illustrate the methodology with two real data examples.  相似文献   

15.
The authors consider regression analysis for binary data collected repeatedly over time on members of numerous small clusters of individuals sharing a common random effect that induces dependence among them. They propose a mixed model that can accommodate both these structural and longitudinal dependencies. They estimate the parameters of the model consistently and efficiently using generalized estimating equations. They show through simulations that their approach yields significant gains in mean squared error when estimating the random effects variance and the longitudinal correlations, while providing estimates of the fixed effects that are just as precise as under a generalized penalized quasi‐likelihood approach. Their method is illustrated using smoking prevention data.  相似文献   

16.
In longitudinal studies, the proportional hazard model is often used to analyse covariate effects on the duration time, defined as the elapsed time between the first and second event. In this article, we consider the situation when the first event suffers partly interval-censoring and the second event suffers left-truncation and right-censoring. We proposed a two-step estimation procedure for estimating the regression coefficients of the proportional model. A simulation study is conducted to investigate the performance of the proposed estimator.  相似文献   

17.
Summary.  We present a multivariate logistic regression model for the joint analysis of longitudinal multiple-source binary data. Longitudinal multiple-source binary data arise when repeated binary measurements are obtained from two or more sources, with each source providing a measure of the same underlying variable. Since the number of responses on each subject is relatively large, the empirical variance estimator performs poorly and cannot be relied on in this setting. Two methods for obtaining a parsimonious within-subject association structure are considered. An additional complication arises with estimation, since maximum likelihood estimation may not be feasible without making unrealistically strong assumptions about third- and higher order moments. To circumvent this, we propose the use of a generalized estimating equations approach. Finally, we present an analysis of multiple-informant data obtained longitudinally from a psychiatric interventional trial that motivated the model developed in the paper.  相似文献   

18.
Mean survival time is often of inherent interest in medical and epidemiologic studies. In the presence of censoring and when covariate effects are of interest, Cox regression is the strong default, but mostly due to convenience and familiarity. When survival times are uncensored, covariate effects can be estimated as differences in mean survival through linear regression. Tobit regression can validly be performed through maximum likelihood when the censoring times are fixed (ie, known for each subject, even in cases where the outcome is observed). However, Tobit regression is generally inapplicable when the response is subject to random right censoring. We propose Tobit regression methods based on weighted maximum likelihood which are applicable to survival times subject to both fixed and random censoring times. Under the proposed approach, known right censoring is handled naturally through the Tobit model, with inverse probability of censoring weighting used to overcome random censoring. Essentially, the re‐weighting data are intended to represent those that would have been observed in the absence of random censoring. We develop methods for estimating the Tobit regression parameter, then the population mean survival time. A closed form large‐sample variance estimator is proposed for the regression parameter estimator, with a semiparametric bootstrap standard error estimator derived for the population mean. The proposed methods are easily implementable using standard software. Finite‐sample properties are assessed through simulation. The methods are applied to a large cohort of patients wait‐listed for kidney transplantation.  相似文献   

19.
In this article, we consider statistical inference for longitudinal partial linear models when the response variable is sometimes missing with missingness probability depending on the covariate that is measured with error. A generalized empirical likelihood (GEL) method is proposed by combining correction attenuation and quadratic inference functions. The method that takes into consideration the correlation within groups is used to estimate the regression coefficients. Furthermore, residual-adjusted empirical likelihood (EL) is employed for estimating the baseline function so that undersmoothing is avoided. The empirical log-likelihood ratios are proven to be asymptotically Chi-squared, and the corresponding confidence regions for the parameters of interest are then constructed. Compared with methods based on NAs, the GEL does not require consistent estimators for the asymptotic variance and bias. The numerical study is conducted to compare the performance of the EL and the normal approximation-based method, and a real example is analysed.  相似文献   

20.
In longitudinal studies, the additive hazard model is often used to analyze covariate effects on the duration time, defined as the elapsed time between the first and the second event. In this article, we consider the situation when the first event suffers partly interval censoring and the second event suffers left truncation and right-censoring. We proposed a two-step estimation procedure for estimating the regression coefficients of the additive hazards model. A simulation study is conducted to investigate the performance of the proposed estimator. The proposed method is applied to the Centers for Disease Control acquired immune deficiency syndrome blood transfusion data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号