首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total ban on use of meat and bone meal (MBM) in livestock feed has been very successful in reducing bovine spongiform encephalopathy (BSE) spread, but also implies a waste of high-quality proteins resulting in economic and ecological loss. Now that the BSE epidemic is fading out, a partial lifting of the MBM ban might be considered. The objective of this study was to assess the BSE risk for the Netherlands if MBM derived from animals fit for human consumption, i.e., category 3 MBM, would be used in nonruminant feed. A stochastic simulation model was constructed that calculates (1) the probability that infectivity of undetected BSE-infected cows ends up with calves and (2) the quantity of infectivity ( Qinf ) consumed by calves in case of such an incident. Three pathways were considered via which infectivity can reach cattle: (1) cross-contamination in the feed mill, (2) cross-contamination on the primary farm, and (3) pasture contamination. Model calculations indicate that the overall probability that infectivity ends up with calves is 3.2%. In most such incidents the Qinf is extremely small (median = 6.5 × 10−12 ID50; mean = 1.8 × 10−4 ID50), corresponding to an average probability of 1.3 × 10−4 that an incident results in ≥1 new BSE infections. Cross-contamination in the feed mill is the most risky pathway. Combining model results with Dutch BSE prevalence estimates for the coming years, it can be concluded that the BSE risk of using category 3 MBM derived from Dutch cattle in nonruminant feed is very low.  相似文献   

2.
3.
A predictive case-cohort model is applied to Norwegian data to analyze the interaction between challenge and stability factors for bovine spongiform encephalopathy (BSE) during the period 1980-2010. For each year, the BSE risk in cattle is estimated as the expected number of cases. The age distribution of expected cases as well as the relative impact of different challenges is estimated. The model consists of a simple, transparent, and practical deterministic spreadsheet calculation model, in which the following country-specific inputs are entered: (i) annual imports of live cattle and meat and bone meal, (ii) age distribution of native cattle, and (iii) estimated annual basic reproduction ratio (R(0)) for BSE. Results for Norway indicate that the highest risk of BSE cases was in 1989, when a total BSE risk of 0.13 cases per year was expected. After that date, the year-to-year decrease in risk ranged between 3% and 47%, except for a secondary peak in 1994 at 0.06 cases per year. The primary peak was almost entirely (99%) attributable to the importation of 11 cattle from the United Kingdom between 1982 and 1986. The secondary peak, in 1994, originated mainly from the recycling of the U.K. imported cattle (92%). In 2006, the remaining risk was 0.0003 cases per year, or 0.001 per million cows per year, with a maximal age-specific incidence of 0.03 cases per million per year in 10-year-old cattle. Only 15% of the cases were expected in imported cattle. The probability of having zero cases in Norway in 2006 was estimated to be 99.97%. The model and results are compared to previous risk assessments of Norway by the EU.  相似文献   

4.
Clinical surveillance was the only way to detect bovine spongiform encephalopathy (BSE) until July 2000 in France. From the 103 cases identified as such between 1991 and June 2000, we used a back-calculation method to reconstruct the longitudinal trend of BSE infections. Between July 1987 and June 1997, an estimated 51,300 (CI =[24,300-84,700]) cattle were infected in France. The comprehensive surveillance of BSE with rapid tests, set up in France since 2001 at the abattoir and fallen plant, allowed study of the relative exposure of the successive birth cohorts with nonconditional logistic regression models adjusted for possible confounding variables. The results were in agreement with those of the back-calculation model, estimating a decrease of the BSE exposure from the birth cohort July 1995-June 1996 that matched with the decrease of the infection after June 1996. In view of the long incubation period of BSE, it is not possible to precisely assess the impact of any control measure before several years. Modeling was therefore used to estimate prospectively the efficiency of the ban of meat and bone meal extended to all farm species in November 2000. Using parameters about age at infection and incubation time estimated earlier, we assessed the minimum time to first detection if infections still occurred. We have waited up to June 2007 to know if less than 100 infections occurred among French cattle during the 6 months following January 2001.  相似文献   

5.
The current French bovine spongiform encephalopathy (BSE) surveillance system, based on rapid testing of all cattle over 24 months of age and on clinical diagnosis, detects all clinical cases and some preclinical cases of BSE. Several indicators point to a marked shrinkage of the French BSE epidemic in recent years, owing to risk reduction measures. Meat and bone meal, the only known vector of the BSE agent, was banned in feed for all farmed species in November 2000. Thus the surveillance system may be relaxed. The objective of this risk assessment study was to provide information for decisionmakers on the minimum age at which healthy and high-risk cattle now need to be screened with rapid tests. For this purpose, we used the back-calculation method to project the course of the BSE epidemic. We examined the predicted patterns of the number and age distribution of cases of BSE that would be detected by the different existing surveillance streams. Various theoretical sensitivities of rapid tests were explored. Assuming that feed-borne sources of infection no longer exist, and that BSE does not occur spontaneously, our models suggest that it would have been possible to raise the minimum age for rapid tests to 66 months in early 2006, whereas theoretical reasoning, based on the assumption that the total meat and bone meal ban was effective in November 2001, suggests that this age cutoff could only be raised to 48 months in early 2006. These results only apply to cattle born and bred in France. If the situation remains unchanged, the age cutoff could be raised incrementally each year.  相似文献   

6.
A. de Koeijer 《Risk analysis》2012,32(12):2198-2208
A predictive case‐cohort model was applied to Japanese data to analyze the interaction between challenge and stability factors for bovine spongiform encephalopathy (BSE) for the period 1985–2020. BSE risk in cattle was estimated as the expected number of detectable cases per year. The model was comprised of a stochastic spreadsheet calculation model with the following inputs: (1) the origin and quantity of live cattle and meat and bone meal imported into Japan, (2) the age distribution of native cattle, and (3) the estimated annual basic reproduction ratio (R0) for BSE. The estimated probability of having zero detectable cases in Japan in 2015 was 0.90 (95% CI 0.83–0.95). The corresponding value for 2020 was 0.99 (95% CI 0.98–0.99). The model predicted that detectable cases may occur in Japan beyond 2015 because of the assumption that continued transmission was permitted to occur (albeit at a very low level) after the 2001 ban on the importation and domestic use of all processed animal proteins for the production of animal feed and for fertilizer. These results reinforce the need for animal health authorities to monitor the efficacy of control measures so that the future course of the BSE epidemic in Japan can be predicted with greater certainty.  相似文献   

7.
Wastewater from facilities processing livestock that may harbor transmissible spongiform encephalopathies (TSEs) infectivity is permitted under license for application to land where susceptible livestock may have access. Several previous risk assessments have investigated the risk of bovine spongiform encephalopathy (BSE) associated with wastewater effluents; however, the risk of exposure to classical scrapie and atypical scrapie has not been assessed. With the prevalence of certain TSEs (BSE in cattle and classical scrapie in sheep) steadily in decline, and with considerable changes in the structure of carcass‐processing industries in Great Britain, a reappraisal of the TSE risk posed by wastewater is required. Our results indicate that the predicted number of new TSE infections arising from the spreading of wastewater on pasture over one year would be low, with a mean of one infection every 1,000 years for BSE in cattle (769, 555,556), and one infection every 30 years (16, 2,500), and 33 years (16, 3,333) for classical and atypical scrapie, respectively. It is assumed that the values and assumptions used in this risk assessment remain constant. For BSE in cattle the main contributors are abattoir and rendering effluent, contributing 35% and 22% of the total number of new BSE infections. For TSEs in sheep, effluent from small incinerators and rendering plants are the major contributors (on average 32% and 31% of the total number of new classical scrapie and atypical scrapie infections). This is a reflection of the volume of carcass material and Category 1 material flow through such facilities.  相似文献   

8.
Since 2013, wild poliovirus (WPV) transmission occurred only for type 1 (WPV1). Following several years of increasing reported incidence (2017–2019) and programmatic disruptions caused by COVID-19 (early 2020), Pakistan and Afghanistan performed a large number of supplementary immunization activities (late 2020–2021). This increased intensity of immunization, following widespread transmission, substantially decreased WPV1 cases and positive environmental samples during 2021. Modeling the potential for undetected circulation of WPV1 after apparent interruption can support regional and global decisions about certification of the eradication of indigenous WPV1 transmission. We apply a stochastic model to estimate the confidence about no circulation (CNC) of WPV1 in Pakistan and Afghanistan as a function of time since the last reported case and/or positive environmental sample. Exploration of different assumptions about surveillance quality suggests a range for CNC for WPV1 as a function of time since the last positive surveillance signal, and supports the potential use of a time with no evidence of transmission of less than 3 years as sufficient to assume die out in the context of good acute flaccid paralysis (AFP) surveillance. We show high expected CNC based on AFP surveillance data alone, even with imperfect surveillance and some use of inactivated poliovirus vaccine masking the ability of AFP surveillance to detect transmission. Ensuring high quality AFP and environmental surveillance may substantially shorten the time required to reach high CNC. The time required for high CNC depends on whether immunization activities maintain high population immunity and the quality of surveillance data.  相似文献   

9.
The extensive and growing use of electronic performance monitoring in organisations has resulted in considerable debate over the years. This paper focuses on workplace monitoring at the Welsh Ambulance Services Trust (WAST), a provider of emergency services for the people of Wales, in the UK. The key objectives include examining the nature of performance monitoring at its call centres and determining whether employees are micromanaged through the use of workplace surveillance. The findings cover staff (both management and non-management) perceptions, gathered through a questionnaire and interviews as well as observations made in the study areas. The findings revealed that workplace electronic monitoring is not intrinsically all good or all bad. It is value neutral and offers a win–win situation.  相似文献   

10.
To date, the variant Creutzfeldt‐Jakob disease (vCJD) risk assessments that have been performed have primarily focused on predicting future vCJD cases in the United Kingdom, which underwent a bovine spongiform encephalopathy (BSE) epidemic between 1980 and 1996. Surveillance of potential BSE cases was also used to assess vCJD risk, especially in other BSE‐prevalent EU countries. However, little is known about the vCJD risk for uninfected individuals who accidentally consume BSE‐contaminated meat products in or imported from a country with prevalent BSE. In this article, taking into account the biological mechanism of abnormal prion PrPres aggregation in the brain, the probability of exposure, and the expected amount of ingested infectivity, we establish a stochastic mean exponential growth model of lifetime exposure through dietary intake. Given the findings that BSE agents behave similarly in humans and macaques, we obtained parameter estimates from experimental macaque data. We then estimated the accumulation of abnormal prions to assess lifetime risk of developing clinical signs of vCJD. Based on the observed number of vCJD cases and the estimated number of exposed individuals during the BSE epidemic period from 1980 to 1996 in the United Kingdom, an exposure threshold hypothesis is proposed. Given the age‐specific risk of infection, the hypothesis explains the observations very well from an extreme‐value distribution fitting of the estimated BSE infectivity exposure. The current BSE statistics in the United Kingdom are provided as an example.  相似文献   

11.
The purpose of this article is to quantify the public health risk associated with inhalation of indoor airborne infection based on a probabilistic transmission dynamic modeling approach. We used the Wells-Riley mathematical model to estimate (1) the CO2 exposure concentrations in indoor environments where cases of inhalation airborne infection occurred based on reported epidemiological data and epidemic curves for influenza and severe acute respiratory syndrome (SARS), (2) the basic reproductive number, R0 (i.e., expected number of secondary cases on the introduction of a single infected individual in a completely susceptible population) and its variability in a shared indoor airspace, and (3) the risk for infection in various scenarios of exposure in a susceptible population for a range of R0. We also employ a standard susceptible-infectious-recovered (SIR) structure to relate Wells-Riley model derived R0 to a transmission parameter to implicate the relationships between indoor carbon dioxide concentration and contact rate. We estimate that a single case of SARS will infect 2.6 secondary cases on average in a population from nosocomial transmission, whereas less than 1 secondary infection was generated per case among school children. We also obtained an estimate of the basic reproductive number for influenza in a commercial airliner: the median value is 10.4. We suggest that improving the building air cleaning rate to lower the critical rebreathed fraction of indoor air can decrease transmission rate. Here, we show that virulence of the organism factors, infectious quantum generation rates (quanta/s by an infected person), and host factors determine the risk for inhalation of indoor airborne infection.  相似文献   

12.
Jump Regressions     
We develop econometric tools for studying jump dependence of two processes from high‐frequency observations on a fixed time interval. In this context, only segments of data around a few outlying observations are informative for the inference. We derive an asymptotically valid test for stability of a linear jump relation over regions of the jump size domain. The test has power against general forms of nonlinearity in the jump dependence as well as temporal instabilities. We further propose an efficient estimator for the linear jump regression model that is formed by optimally weighting the detected jumps with weights based on the diffusive volatility around the jump times. We derive the asymptotic limit of the estimator, a semiparametric lower efficiency bound for the linear jump regression, and show that our estimator attains the latter. The analysis covers both deterministic and random jump arrivals. In an empirical application, we use the developed inference techniques to test the temporal stability of market jump betas.  相似文献   

13.
Large-scale multinational manufacturing firms often require a significant investment in production capacity and extensive management efforts in strategic planning in an uncertain business environment. In this research we first discuss what decision terms and boundary conditions a holistic capacity management model for the manufacturing industry must contain. To better understand how these decision terms and constraints have been employed by the recent model developers in the area of capacity and resource management modelling for manufacturing, 69 optimisation-based (deterministic and stochastic) models have been carefully selected from 2000 to 2018 for a brief comparative analysis. The results of this comparison shows although applying uncertainty into capacity modelling (in stochastic form) has received a greater deal of attention most recently (since 2010), the existing stochastic models are yet very simplistic, and not all the strategic terms have been employed in the current model developments in the field. This lack of a holistic approach although is evident in deterministic models too, the existing stochastic counterparts proved to include much less decision terms and inclusive constraints, which limits them to a limited applications and may cause sub-optimal solutions. Employing this set of holistic decision terms and boundary conditions, this work develops a scenario-based multi-stage stochastic capacity management model, which is capable of modelling different strategic terms such as capacity level management (slight, medium and large capacity volume adjustment to increase/decrease capacity), location/relocation decisions, merge/decomposition options, and product management (R&D, new product launch, product-to-plant and product-to-market allocation, and product phase-out management). Possibility matrix, production rates, different financial terms and international taxes, inflation rates, machinery depreciation, investment lead-time and product cycle-time are also embedded in the model in order to make it more practical, realistic and sensitive to strategic decisions and scenarios. A step-by-step open-box validation has been followed while designing the model and a holistic black-box validation plan has been designed and employed to widely validate the model. The model then has been verified by deploying a real-scaled case of Toyota Motors UK (TMUK) decision of mothballing one of their production lines in the UK after the global recession in 2010.  相似文献   

14.
The objective of this article is to characterize the risk of infection from airborne Mycobacterium tuberculosis bacilli exposure in commercial passenger trains based on a risk‐based probabilistic transmission modeling. We investigated the tuberculosis (TB) infection risks among commercial passengers by inhaled aerosol M. tuberculosis bacilli and quantify the patterns of TB transmission in Taiwan High Speed Rail (THSR). A deterministic Wells‐Riley mathematical model was used to account for the probability of infection risk from M. tuberculosis bacilli by linking the cough‐generated aerosol M. tuberculosis bacilli concentration and particle size distribution. We found that (i) the quantum generation rate of TB was estimated with a lognormal distribution of geometric mean (GM) of 54.29 and geometric standard deviation (GSD) of 3.05 quantum/h at particle size ≤ 5 μm and (ii) the basic reproduction numbers (R0) were estimated to be 0.69 (0.06–6.79), 2.82 (0.32–20.97), and 2.31 (0.25–17.69) for business, standard, and nonreserved cabins, respectively. The results indicate that commercial passengers taking standard and nonreserved cabins had higher transmission risk than those in business cabins based on conservatism. Our results also reveal that even a brief exposure, as in the bronchoscopy cases, can also result in a transmission when the quantum generation rate is high. This study could contribute to a better understanding of the dynamics of TB transmission in commercial passenger trains by assessing the relationship between TB infectiousness, passenger mobility, and key model parameters such as seat occupancy, ventilation rate, and exposure duration.  相似文献   

15.
Since most poliovirus infections occur with no paralytic symptoms, the possibility of silent circulation complicates the confirmation of the end of poliovirus transmission. Based on empirical field experience and theoretical modeling results, the Global Polio Eradication Initiative identified three years without observing paralytic cases from wild polioviruses with good acute flaccid paralysis surveillance as an indication of sufficient confidence that poliovirus circulation stopped. The complexities of real populations and the imperfect nature of real surveillance systems subsequently demonstrated the importance of specific modeling for areas at high risk of undetected circulation, resulting in varying periods of time required to obtain the same level of confidence about no undetected circulation. Using a poliovirus transmission model that accounts for variability in transmissibility and neurovirulence for different poliovirus serotypes and characterizes country‐specific factors (e.g., vaccination and surveillance activities, demographics) related to wild and vaccine‐derived poliovirus transmission in Pakistan and Afghanistan, we consider the probability of undetected poliovirus circulation for those countries once apparent die‐out occurs (i.e., in the absence of any epidemiological signals). We find that gaps in poliovirus surveillance or reaching elimination with borderline sufficient population immunity could significantly increase the time to reach high confidence about interruption of live poliovirus transmission, such that the path taken to achieve and maintain poliovirus elimination matters. Pakistan and Afghanistan will need to sustain high‐quality surveillance for polioviruses after apparent interruption of transmission and recognize that as efforts to identify cases or circulating live polioviruses decrease, the risks of undetected circulation increase and significantly delay the global polio endgame.  相似文献   

16.
The U.S. Department of Agriculture (USDA) tests a subset of cattle slaughtered in the United States for bovine spongiform encephalitis (BSE). Knowing the origin of cattle (U.S. vs. Canadian) at testing could enable new testing or surveillance policies based on the origin of cattle testing positive. For example, if a Canadian cow tests positive for BSE, while no U.S. origin cattle do, the United States could subject Canadian cattle to more stringent testing. This article illustrates the application of a value-of-information (VOI) framework to quantify and compare potential economic costs to the United States of implementing tracking cattle origins to the costs of not doing so. The potential economic value of information from a tracking program is estimated to exceed its costs by more than five-fold if such information can reduce future losses in export and domestic markets and reduce future testing costs required to reassure or win back customers. Sensitivity analyses indicate that this conclusion is somewhat robust to many technical, scientific, and market uncertainties, including the current prevalence of BSE in the United States and/or Canada and the likely reactions of consumers to possible future discoveries of BSE in the United States and/or Canada. Indeed, the potential value of tracking information is great enough to justify locating and tracking Canadian cattle already in the United States when this can be done for a reasonable cost. If aggressive tracking and testing can win back lost exports, then the VOI of a tracking program may increase to over half a billion dollars per year.  相似文献   

17.
This paper reviews the state of the field of the sub-disciplines within UK management research, based upon the submissions of 94 UK higher education institutions to the Business and Management Studies Panel in the UK's 2001 Research Assessment Exercise (RAE). It offers observations on the UK model of the assessment of quality in, and funding of, research conducted in publicly funded higher education institutions.  相似文献   

18.
As a result of consumer fears and political concerns related to BSE as a risk to human health, a need has arisen recently for more sensitive methods to detect BSE and more accurate methods to determine BSE incidence. As a part of the development of such methods, it is important to be able to identify groups of animals with above-average BSE risk. One of the well-known risk factors for BSE is age, as very young animals do not develop the disease, and very old animals are less likely to develop the disease. Here, we analyze which factors have a strong influence on the age distribution of BSE in a population. Building on that, we develop a simple set of calculation rules for classifying the BSE risk in a given cattle population. Required inputs are data on imports and on the BSE control measures in place over the last 10 or 20 years.  相似文献   

19.
The aim of this article is to build a methodology allowing the study and the comparison of the potential spread of BSE at the scale of countries under different routine slaughtering conditions in order to evaluate the risk of nonextinction due to this slaughtering. We first model the evolution in discrete time of the proportion of animals in the latent period and that of infectives, assuming a very large branching population not necessarily constant in size, two age classes, less than 1-year-old animals, and adult animals. We analytically derive a bifurcation parameter rho(0) allowing us to predict either endemicity or extinction of the disease, which has the meaning of an epidemiological reproductive rate. We show that the classical reproductive number R(0) cannot be used for prediction if the size of the population, when healthy, does not remain stable throughout time. We illustrate the qualitative results by means of simulations with either the British routine slaughtering probabilities or the French ones, the other conditions being assumed identical in both countries. We show that the French probabilities lead to a higher risk of spread of the disease than the British ones, this result being mainly due to a smaller value of the routine slaughtering probability of the adult animals in France than in Great Britain.  相似文献   

20.
Following the detection of bovine spongiform encephalopathy (BSE) in Canada, and subsequently in the United States, confidence in the safety of beef products remained high. Consumers actually increased their consumption of beef slightly after the news of an increased risk from mad cow disease, which has been interpreted as public support for beef farmers and confidence in government regulators. The Canadian public showed a markedly different reaction to the news of domestic BSE than the furious and panicked responses observed in the United Kingdom, Germany, and Japan. Using the social amplification of risk framework, we show that, while other countries displayed social amplification of risk, Canada experienced a social attenuation of risk. The attenuated reaction in Canada toward mad cow disease and increased human health risks from variant Creutzfeldt-Jakob disease (vCJD) was due to the social context at the time when BSE was discovered domestically. Mortality, morbidity, and psychosocial impacts resulting from other major events such as severe acute respiratory syndrome (SARS), West Nile virus (WNV), and the U.S.-Iraq war made the theoretical risks of BSE and vCJD a lower priority, reducing its concern as a risk issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号