首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniform designs are widely used in various applications. However, it is computationally intractable to construct uniform designs, even for moderate number of runs, factors and levels. We establish a linear relationship between average squared centered L2-discrepancy and generalized wordlength pattern, and then based on it, we propose a general method for constructing uniform designs with arbitrary number of levels. The main idea is to choose a generalized minimum aberration design and then permute its levels. We propose a novel stochastic algorithm and obtain many new uniform designs that have smaller centered L2-discrepancies than the existing ones.  相似文献   

2.
This paper discusses the issue of choosing optimal designs when both blocking and foldover techniques are simultaneously employed to nonregular two-level fractional factorial designs. By using the indicator function, the treatment and block generalized wordlength patterns of the combined blocked design under a general foldover plan are defined. Some general properties of combined block designs are also obtained. Our results extend the findings of Ai et al. (2010) from regular designs to nonregular designs. Based on these theoretical results, a catalog of optimal blocking and foldover plans in terms of the generalized aberration criterion for nonregular initial design with 12, 16 and 20 runs is tabulated, respectively.  相似文献   

3.
4.
By using exact integer programming (IP) (integer programming in infinite precision) bounds on the word-length patterns (WLPs) and generalized word-length patterns (GWPs) for fractional factorial designs are improved. In the literature, bounds on WLPs are formulated as linear programming (LP) problems. Although the solutions to such problems must be integral, the optimization is performed without the integrality constraints. Two examples of this approach are bounds on the number of words of length four for resolution IV regular designs, and a lower bound for the GWP of two-level orthogonal arrays. We reformulate these optimization problems as IP problems with additional valid constraints in the literature and improve the bounds in many cases. We compare the improved bound to the enumeration results in the literature to find many cases for which our bounds are achieved. By using the constraints in our integer programs we prove that f(16λ,2,4)?9f(16λ,2,4)?9 if λλ is odd where f(2tλ,2,t)f(2tλ,2,t) is the maximum n   for which an OA(N,n,2,t)OA(N,n,2,t) exists. We also present a theorem for constructing GMA OA(N,N/2-u,2,3)OA(N,N/2-u,2,3) for u=1,…,5u=1,,5.  相似文献   

5.
6.
Fractional factorial split-plot (FFSP) designs have received much attention in recent years. In this article, the matrix representation for FFSP designs with multi-level factors is first developed, which is an extension of the one proposed by Bingham and Sitter (1999b Bingham , D. , Sitter , R. R. ( 1999b ). Some theoretical results for fractional factorial split-plot designs . Ann. Statist. 27 : 12401255 . [Google Scholar]) for the two-level case. Based on this representation, periodicity results of maximum resolution and minimum aberration for such designs are derived. Differences between FFSP designs with multi-level factors and those with two-level factors are highlighted.  相似文献   

7.
Orthogonal factorial and fractional factorial designs are very popular in many experimental studies, particularly the two-level and three-level designs used in screening experiments. When an experimenter is able to specify the set of possibly nonnegligible factorial effects, it is sometimes possible to obtain an orthogonal design belonging to the class of parallel flats designs, that has a smaller run-size than a suitable design from the class of classical fractional factorial designs belonging to the class of single flat designs. Sri-vastava and Li (1996) proved a fundamental theorem of orthogonal s-level, s being a prime, designs of parallel flats type for the user-specified resolution. They also tabulated a series of orthogonal designs for the two-level case. No orthogonal designs for three-level case are available in their paper. In this paper, we present a simple proof for the theorem given in Srivastava and Li (1996) for the three-level case. We also give a dual form of the theorem, which is more useful for developing an algorithm for construction of orthogonal designs. Some classes of three-level orthogonal designs with practical run-size are given in the paper.  相似文献   

8.
Several criteria have been proposed for ranking blocked fractional factorial designs. For large fractional factorial designs, the most appropriate minimum aberration criterion was one proposed by Cheng and Wu (2002). We justify this assertion and propose a novel construction method to overcome the computational challenge encountered in large fractional factorial designs. Tables of minimum aberration blocked designs are presented for N=128 runs and n=8–64 factors.  相似文献   

9.
The authors derive upper and lower bounds on the maximum number of clear two‐factor interactions in 2m?p fractional factorial designs of resolution III and IV. A two‐factor interaction is said to be clear if it is not aliased with any main effect or with any other two‐factor interaction. The lower bounds are obtained by exhibiting specific designs. By comparing the bounds with the values of the maximum number of clear two‐factor interactions in cases where it is known, one concludes that the construction methods perform quite well.  相似文献   

10.
Optimal symmetrical fractional factorial designs with nn runs and mm factors of ss levels each are constructed. We consider only designs such that no two factors are aliases. The minimum moment aberration criterion proposed by Xu (2003) is used to judge the optimality of the designs. The minimum moment aberration criterion is equivalent to the popular generalized minimum aberration criterion proposed by Xu and Wu (2001), but the minimum moment criterion is simpler to formulate and employ computationally. Some optimal designs are constructed by using generalized Hadamard matrices.  相似文献   

11.
The authors introduce the notion of split generalized wordlength pattern (GWP), i.e., treatment GWP and block GWP, for a blocked nonregular factorial design. They generalize the minimum aberration criterion to suit this type of design. Connections between factorial design theory and coding theory allow them to obtain combinatorial identities that govern the relationship between the split GWP of a blocked factorial design and that of its blocked consulting design. These identities work for regular and nonregular designs. Furthermore, the authors establish general rules for identifying generalized minimum aberration (GMA) blocked designs through their blocked consulting designs. Finally they tabulate and compare some GMA blocked designs from Hall's orthogonal array OA(16,215,2) of type III.  相似文献   

12.
The objective of this paper is to study U-type designs for Bayesian non parametric response surface prediction under correlated errors. The asymptotic Bayes criterion is developed in terms of the asymptotic approach of Mitchell et al. (1994 Mitchell, T., Sacks, J., Ylvisaker, D. (1994). Asymptotic Bayes criteria for nonparametric response surface design. Ann. Stat. 22:634651.[Crossref], [Web of Science ®] [Google Scholar]) for a more general covariance kernel proposed by Chatterjee and Qin (2011 Chatterjee, K., Qin, H. (2011). Generalized discrete discrepancy and its applications in experimental designs. J. Stat. Plann. Inference 141:951960.[Crossref], [Web of Science ®] [Google Scholar]). A relationship between the asymptotic Bayes criterion and other criteria, such as orthogonality and aberration, is then developed. A lower bound for the criterion is also obtained, and numerical results show that this lower bound is tight. The established results generalize those of Yue et al. (2011 Yue, R.X., Qin, H., Chatterjee, K. (2011). Optimal U-type design for Bayesian nonparametric multiresponse prediction. J. Stat. Plann. Inference 141:24722479.[Crossref], [Web of Science ®] [Google Scholar]) from symmetrical case to asymmetrical U-type designs.  相似文献   

13.
The main theorem of this paper shows that foldover designs are the only (regular or nonregular) two-level factorial designs of resolution IV (strength 3) or more for n   runs and n/3?m?n/2n/3?m?n/2 factors. This theorem is a generalization of a coding theory result of Davydov and Tombak [1990. Quasiperfect linear binary codes with distance 4 and complete caps in projective geometry. Problems Inform. Transmission 25, 265–275] which, under translation, effectively states that foldover (or even) designs are the only regular two-level factorial designs of resolution IV or more for n   runs and 5n/16?m?n/25n/16?m?n/2 factors. This paper also contains other theorems including an alternative proof of Davydov and Tombak's result.  相似文献   

14.
In recent years, there has been increasing interest in the study of discrete discrepancy. In this paper, the popular discrete discrepancy is extended to the so-called generalized discrete discrepancy. Connections among generalized discrete discrepancy and other optimality criteria, such as orthogonality, generalized minimum aberration and minimum moment aberration, are investigated. These connections provide strong statistical justification of generalized discrete discrepancy. A lower bound of generalized discrete discrepancy is also obtained, which serves as an important benchmark of design uniformity.  相似文献   

15.
In this paper, we extend the general minimum lower‐order confounding (GMC) criterion to the case of three‐level designs. First, we review the relationship between GMC and other criteria. Then we introduce an aliased component‐number pattern (ACNP) and a three‐level GMC criterion via the consideration of component effects, and obtain some results on the new criterion. All the 27‐run GMC designs, 81‐run GMC designs with factor numbers $n=5,\ldots,20$ and 243‐run GMC designs with resolution $IV$ or higher are tabulated. The Canadian Journal of Statistics 41: 192–210; 2013 © 2012 Statistical Society of Canada  相似文献   

16.
The orthogonal arrays with mixed levels have become widely used in fractional factorial designs. It is highly desirable to know when such designs with resolution III or IV have clear two-factor interaction components (2fic’s). In this paper, we give a complete classification of the existence of clear 2fic’s in regular 2 m 4 n designs with resolution III or IV. The necessary and sufficient conditions for a 2 m 4 n design to have clear 2fic’s are given. Also, 2 m 4 n designs of 32 runs with the most clear 2fic’s are given for n = 1,2.   相似文献   

17.
Randomizing the order of experimentation in a factorial design does not always achieve the desired effect of neutralizing the influence of unknown factors. In fact, with some very reasonable assumptions, an important proportion of random orders achieve the same degree of protection as that obtained by experimenting in the design matrix standard order. In addition, randomization can induce a large number of changes in factor levels and thus make experimentation expensive and difficult. De Leon et al. [Experimentation order in factorial designs with 8 or 16 runs, J. Appl. Stat. 32 (2005), pp. 297–313] proposed experimentation orders for designs with eight or 16 runs that combine an excellent level of protection against the influence of unknown factors, with the minimum number of changes in factor levels. This article presents a new methodology to obtain experimentation orders with the desired properties for designs with any number of runs.  相似文献   

18.
Experimentation order in factorial designs with 8 or 16 runs   总被引:1,自引:0,他引:1  
Randomizing the order of experimentation in a factorial design does not always achieve the desired effect of neutralizing the influence of unknown factors. In fact, with some very reasonable assumptions, an important proportion of random orders afford the same degree of protection as that obtained by experimenting in the design matrix standard order. In addition, randomization can induce a big number of changes in factor levels and thus make experimentation expensive and difficult. This paper discusses this subject and suggests experimentation orders for designs with 8 or 16 runs that combine an excellent level of protection against the influence of unknown factors, with the minimum number of changes in factor levels.  相似文献   

19.
We consider a fractional 3m factorial design derived from a simple array (SA) such that the non negligible factorial effects are the general mean, the linear and the quadratic components of the main effect, and the linear-by-linear and the linear-by-quadratic components of the two-factor interaction. If these effects are estimable, then a design is said to be of resolution R({00, 10, 01, 20, 11}). In this paper, we give a necessary and sufficient condition for an SA to be a balanced fractional 3m factorial design of resolution R({00, 10, 01, 20, 11}). Such a design is concretely characterized by the suffixes of the indices of an SA.  相似文献   

20.
This paper presents the trace of the covariance matrix of the estimates of effects based on a fractional 2m factorial (2m-FF) design T of resolution V for the following two cases: One is the case where T is constructed by adding some restricted assemblies to an orthogonal array. The other is one where T is constructed by removing some restricted assemblies from an orthogonal array of index unity. In the class of 2m-FF designs of resolution V considered here, optimal designs with respect to the trace criterion, i.e. A-optimal, are presented for m = 4, 5, and 6 and for a range of practical values of N (the total number of assemblies). Some of them are better than the corresponding A-optimal designs in the class of balanced fractional 2m factorial designs of resolution V obtained by Srivastava and Chopra (1971b) in such a sense that the trace of the covariance matrix of the estimates is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号