首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary.  In studies to assess the accuracy of a screening test, often definitive disease assessment is too invasive or expensive to be ascertained on all the study subjects. Although it may be more ethical or cost effective to ascertain the true disease status with a higher rate in study subjects where the screening test or additional information is suggestive of disease, estimates of accuracy can be biased in a study with such a design. This bias is known as verification bias. Verification bias correction methods that accommodate screening tests with binary or ordinal responses have been developed; however, no verification bias correction methods exist for tests with continuous results. We propose and compare imputation and reweighting bias-corrected estimators of true and false positive rates, receiver operating characteristic curves and area under the receiver operating characteristic curve for continuous tests. Distribution theory and simulation studies are used to compare the proposed estimators with respect to bias, relative efficiency and robustness to model misspecification. The bias correction estimators proposed are applied to data from a study of screening tests for neonatal hearing loss.  相似文献   

2.
Summary.  In diagnostic medicine, the receiver operating characteristic (ROC) surface is one of the established tools for assessing the accuracy of a diagnostic test in discriminating three disease states, and the volume under the ROC surface has served as a summary index for diagnostic accuracy. In practice, the selection for definitive disease examination may be based on initial test measurements and induces verification bias in the assessment. We propose a non-parametric likelihood-based approach to construct the empirical ROC surface in the presence of differential verification, and to estimate the volume under the ROC surface. Estimators of the standard deviation are derived by both the Fisher information and the jackknife method, and their relative accuracy is evaluated in an extensive simulation study. The methodology is further extended to incorporate discrete baseline covariates in the selection process, and to compare the accuracy of a pair of diagnostic tests. We apply the proposed method to compare the diagnostic accuracy between mini-mental state examination and clinical evaluation of dementia, in discriminating between three disease states of Alzheimer's disease.  相似文献   

3.
Receiver operating characteristic (ROC) curve, plotting true positive rates against false positive rates as threshold varies, is an important tool for evaluating biomarkers in diagnostic medicine studies. By definition, ROC curve is monotone increasing from 0 to 1 and is invariant to any monotone transformation of test results. And it is often a curve with certain level of smoothness when test results from the diseased and non-diseased subjects follow continuous distributions. Most existing ROC curve estimation methods do not guarantee all of these properties. One of the exceptions is Du and Tang (2009) which applies certain monotone spline regression procedure to empirical ROC estimates. However, their method does not consider the inherent correlations between empirical ROC estimates. This makes the derivation of the asymptotic properties very difficult. In this paper we propose a penalized weighted least square estimation method, which incorporates the covariance between empirical ROC estimates as a weight matrix. The resulting estimator satisfies all the aforementioned properties, and we show that it is also consistent. Then a resampling approach is used to extend our method for comparisons of two or more diagnostic tests. Our simulations show a significantly improved performance over the existing method, especially for steep ROC curves. We then apply the proposed method to a cancer diagnostic study that compares several newly developed diagnostic biomarkers to a traditional one.  相似文献   

4.
Receiver operating characteristic (ROC) curves can be used to assess the accuracy of tests measured on ordinal or continuous scales. The most commonly used measure for the overall diagnostic accuracy of diagnostic tests is the area under the ROC curve (AUC). A gold standard (GS) test on the true disease status is required to estimate the AUC. However, a GS test may be too expensive or infeasible. In many medical researches, the true disease status of the subjects may remain unknown. Under the normality assumption on test results from each disease group of subjects, we propose a heuristic method of estimating confidence intervals for the difference in paired AUCs of two diagnostic tests in the absence of a GS reference. This heuristic method is a three-stage method by combining the expectation-maximization (EM) algorithm, bootstrap method, and an estimation based on asymptotic generalized pivotal quantities (GPQs) to construct generalized confidence intervals for the difference in paired AUCs in the absence of a GS. Simulation results show that the proposed interval estimation procedure yields satisfactory coverage probabilities and expected interval lengths. The numerical example using a published dataset illustrates the proposed method.  相似文献   

5.
The area under the receiver operating characteristic (ROC) curve (AUC) is one of the commonly used measure to evaluate or compare the predictive ability of markers to the disease status. Motivated by an angiographic coronary artery disease (CAD) study, our objective is mainly to evaluate and compare the performance of several baseline plasma levels in the prediction of CAD-related vital status over time. Based on censored survival data, the non-parametric estimators are proposed for the time-dependent AUC. The limiting Gaussian processes of the estimators and the estimated asymptotic variance–covariance functions enable us to further construct confidence bands and develop testing procedures. Applications and finite sample properties of the proposed estimation methods and inference procedures are demonstrated through the CAD-related death data from the British Columbia Vital Statistics Agency and Monte Carlo simulations.  相似文献   

6.
In this article, we analyze the three-way bootstrap estimate of the variance of the reader-averaged nonparametric area under the receiver operating characteristic (ROC) curve. The setting for this work is medical imaging, and the experimental design involves sampling from three distributions: a set of normal and diseased cases (patients), and a set of readers (doctors). The experiment we consider is fully crossed in that each reader reads each case. A reading generates a score that indicates the reader's level of suspicion that the patient is diseased. The distribution of scores for the normal patients is compared to the distribution of scores for the diseased patients via an ROC curve, and the area under the ROC curve (AUC) summarizes the reader's diagnostic ability to separate the normal patients from the diseased ones. We find that the bootstrap estimate of the variance of the reader-averaged AUC is biased, and we represent this bias in terms of moments of success outcomes. This representation helps unify and improve several current methods for multi-reader multi-case (MRMC) ROC analysis.  相似文献   

7.
Abstract. The receiver operating characteristic (ROC) curve is a tool of extensive use to analyse the discrimination capability of a diagnostic variable in medical studies. In certain situations, the presence of a covariate related to the diagnostic variable can increase the discriminating power of the ROC curve. In this article, we model the effect of the covariate over the diagnostic variable by means of non‐parametric location‐scale regression models. We propose a new non‐parametric estimator of the conditional ROC curve and study its asymptotic properties. We also present some simulations and an illustration to a data set concerning diagnosis of diabetes.  相似文献   

8.
The performance of a diagnostic test is summarized by its receiver operating characteristic (ROC) curve. Empirical data on a test's performance often come in the form of observed true positive and false positive relative frequencies, under varying conditions. This paper describes a family of models for analysing such data. The underlying ROC curves are specified by a shift parameter, a shape parameter and a link function. Both the position along the ROC curve and the shift parameter are modelled linearly. The shape parameter enters the model non-linearly but in a very simple manner. One simple application is to the meta-analysis of independent studies of the same diagnostic test, illustrated on some data of Moses, Shapiro & Littenberg (1993). A second application to so-called vigilance data is given, where ROC curves differ across subjects, and modelling of the position along the ROC curve is of primary interest.  相似文献   

9.
A marker's capacity to predict risk of a disease depends on disease prevalence in the target population and its classification accuracy, i.e. its ability to discriminate diseased subjects from non-diseased subjects. The latter is often considered an intrinsic property of the marker; it is independent of disease prevalence and hence more likely to be similar across populations than risk prediction measures. In this paper, we are interested in evaluating the population-specific performance of a risk prediction marker in terms of positive predictive value (PPV) and negative predictive value (NPV) at given thresholds, when samples are available from the target population as well as from another population. A default strategy is to estimate PPV and NPV using samples from the target population only. However, when the marker's classification accuracy as characterized by a specific point on the receiver operating characteristics (ROC) curve is similar across populations, borrowing information across populations allows increased efficiency in estimating PPV and NPV. We develop estimators that optimally combine information across populations. We apply this methodology to a cross-sectional study where we evaluate PCA3 as a risk prediction marker for prostate cancer among subjects with or without previous negative biopsy.  相似文献   

10.
The receiver operating characteristic (ROC) curve is a graphical representation of the relationship between false positive and true positive rates. It is a widely used statistical tool for describing the accuracy of a diagnostic test. In this paper we propose a new nonparametric ROC curve estimator based on the smoothed empirical distribution functions. We prove its strong consistency and perform a simulation study to compare it with some other popular nonparametric estimators of the ROC curve. We also apply the proposed method to a real data set.  相似文献   

11.
The problem of estimating standard errors for diagnostic accuracy measures might be challenging for many complicated models. We can address such a problem by using the Bootstrap methods to blunt its technical edge with resampled empirical distributions. We consider two cases where bootstrap methods can successfully improve our knowledge of the sampling variability of the diagnostic accuracy estimators. The first application is to make inference for the area under the ROC curve resulted from a functional logistic regression model which is a sophisticated modelling device to describe the relationship between a dichotomous response and multiple covariates. We consider using this regression method to model the predictive effects of multiple independent variables on the occurrence of a disease. The accuracy measures, such as the area under the ROC curve (AUC) are developed from the functional regression. Asymptotical results for the empirical estimators are provided to facilitate inferences. The second application is to test the difference of two weighted areas under the ROC curve (WAUC) from a paired two sample study. The correlation between the two WAUC complicates the asymptotic distribution of the test statistic. We then employ the bootstrap methods to gain satisfactory inference results. Simulations and examples are supplied in this article to confirm the merits of the bootstrap methods.  相似文献   

12.
In this paper, regressive models are proposed for modeling a sequence of transitions in longitudinal data. These models are employed to predict the future status of the outcome variable of the individuals on the basis of their underlying background characteristics or risk factors. The estimation of parameters and also estimates of conditional and unconditional probabilities are shown for repeated measures. The goodness of fit tests are extended in this paper on the basis of the deviance and the Hosmer–Lemeshow procedures and generalized to repeated measures. In addition, to measure the suitability of the proposed models for predicting the disease status, we have extended the ROC curve approach to repeated measures. The procedure is shown for the conditional models for any order as well as for the unconditional model, to predict the outcome at the end of the study. The test procedures are also suggested. For testing the differences between areas under the ROC curves in subsequent follow-ups, two different test procedures are employed, one of which is based on permutation test. In this paper, an unconditional model is proposed on the basis of conditional models for the disease progression of depression among the elderly population in the USA on the basis of the Health and Retirement Survey data collected longitudinally. The illustration shows that the disease progression observed conditionally can be employed to predict the outcome and the role of selected variables and the previous outcomes can be utilized for predictive purposes. The results show that the percentage of correct predictions of a disease is quite high and the measures of sensitivity and specificity are also reasonably impressive. The extended measures of area under the ROC curve show that the models provide a reasonably good fit in terms of predicting the disease status during a long period of time. This procedure will have extensive applications in the field of longitudinal data analysis where the objective is to obtain estimates of unconditional probabilities on the basis of series of conditional transitional models.  相似文献   

13.
Receiver operating characteristic(ROC)curves are useful for studying the performance of diagnostic tests. ROC curves occur in many fields of applications including psychophysics, quality control and medical diagnostics. In practical situations, often the responses to a diagnostic test are classified into a number of ordered categories. Such data are referred to as ratings data. It is typically assumed that the underlying model is based on a continuous probability distribution. The ROC curve is then constructed from such data using this probability model. Properties of the ROC curve are inherited from the model. Therefore, understanding the role of different probability distributions in ROC modeling is an interesting and important area of research. In this paper the Lomax distribution is considered as a model for ratings data and the corresponding ROC curve is derived. The maximum likelihood estimation procedure for the related parameters is discussed. This procedure is then illustrated in the analysis of a neurological data example.  相似文献   

14.
The assessment of a binary diagnostic test requires a knowledge of the disease status of all the patients in the sample through the application of a gold standard. In practice, the gold standard is not always applied to all of the patients, which leads to the problem of partial verification of the disease. When the accuracy of the diagnostic test is assessed using only those patients whose disease status has been verified using the gold standard, the estimators obtained in this way, known as Naïve estimators, may be biased. In this study, we obtain the explicit expressions of the bias of the Naïve estimators of sensitivity and specificity of a binary diagnostic test. We also carry out simulation experiments in order to study the effect of the verification probabilities on the Naïve estimators of sensitivity and specificity.  相似文献   

15.
In many situations the diagnostic decision is not limited to a binary choice. Binary statistical tools such as receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) need to be expanded to address three-category classification problem. Previous authors have suggest various ways to model the extension of AUC but not the ROC surface. Only simple parametric approaches are proposed for modeling the ROC measure under the assumption that test results all follow normal distributions. We study the estimation methods of three-dimensional ROC surfaces with nonparametric and semiparametric estimators. Asymptotical results are provided as a basis for statistical inference. Simulation studies are performed to assess the validity of our proposed methods in finite samples. We consider an Alzheimer's disease example from a clinical study in the US as an illustration. The nonparametric and semiparametric modelling approaches for the three way ROC analysis can be readily generalized to diagnostic problems with more than three classes.  相似文献   

16.
The weighted kappa coefficient of a binary diagnostic test is a measure of the beyond-chance agreement between the diagnostic test and the gold standard, and is a measure that allows us to assess and compare the performance of binary diagnostic tests. In the presence of partial disease verification, the comparison of the weighted kappa coefficients of two or more binary diagnostic tests cannot be carried out ignoring the individuals with an unknown disease status, since the estimators obtained would be affected by verification bias. In this article, we propose a global hypothesis test based on the chi-square distribution to simultaneously compare the weighted kappa coefficients when in the presence of partial disease verification the missing data mechanism is ignorable. Simulation experiments have been carried out to study the type I error and the power of the global hypothesis test. The results have been applied to the diagnosis of coronary disease.  相似文献   

17.
Multiple biomarkers are frequently observed or collected for detecting or understanding a disease. The research interest of this article is to extend tools of receiver operating characteristic (ROC) analysis from univariate marker setting to multivariate marker setting for evaluating predictive accuracy of biomarkers using a tree-based classification rule. Using an arbitrarily combined and-or classifier, an ROC function together with a weighted ROC function (WROC) and their conjugate counterparts are introduced for examining the performance of multivariate markers. Specific features of the ROC and WROC functions and other related statistics are discussed in comparison with those familiar properties for univariate marker. Nonparametric methods are developed for estimating the ROC and WROC functions, and area under curve and concordance probability. With emphasis on population average performance of markers, the proposed procedures and inferential results are useful for evaluating marker predictability based on multivariate marker measurements with different choices of markers, and for evaluating different and-or combinations in classifiers.  相似文献   

18.
Non-inferiority tests are often measured for the diagnostic accuracy in medical research. The area under the receiver operating characteristic (ROC) curve is a familiar diagnostic measure for the overall diagnostic accuracy. Nevertheless, since it may not differentiate the diverse shapes of the ROC curves with different diagnostic significance, the partial area under the ROC (PAUROC) curve, another summary measure emerges for such diagnostic processes that require the false-positive rate to be in the clinically interested range. Traditionally, to estimate the PAUROC, the golden standard (GS) test on the true disease status is required. Nevertheless, the GS test may sometimes be infeasible. Besides, in a lot of research fields such as the epidemiology field, the true disease status of the patients may not be known or available. Under the normality assumption on diagnostic test results, based on the expectation-maximization algorithm in combination with the bootstrap method, we propose the heuristic method to construct a non-inferiority test for the difference in the paired PAUROCs without the GS test. Through the simulation study, although the proposed method might provide a liberal test, as a whole, the empirical size of the proposed method sufficiently controls the size at the significance level, and the empirical power of the proposed method in the absence of the GS is as good as that of the non-inferiority in the presence of the GS. The proposed method is illustrated with the published data.  相似文献   

19.
In biomedical research, two or more biomarkers may be available for diagnosis of a particular disease. Selecting one single biomarker which ideally discriminate a diseased group from a healthy group is confront in a diagnostic process. Frequently, most of the people use the accuracy measure, area under the receiver operating characteristic (ROC) curve to choose the best diagnostic marker among the available markers for diagnosis. Some authors have tried to combine the multiple markers by an optimal linear combination to increase the discriminatory power. In this paper, we propose an alternative method that combines two continuous biomarkers by direct bivariate modeling of the ROC curve under log-normality assumption. The proposed method is applied to simulated data set and prostate cancer diagnostic biomarker data set.  相似文献   

20.
In this paper we propose a flexible method for estimating a receiver operating characteristic (ROC) curve that is based on a continuous-scale test. The approach is easily understood and efficiently computed, and robust to the smooth parameter selection, which needs intensive computation when using local polynomial and smoothing spline techniques. The results from our simulation experiment indicate that the moderate-sample numerical performance of our estimator is better than the empirical ROC curve estimator and comparable to the local linear estimator. The availability of easy implementation is also illustrated by our simulation. We apply the proposed method to two real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号