首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, we study the construction of confidence intervals for a probability density function under a negatively associated sample by using the blockwise technique. It is shown that the blockwise empirical likelihood (EL) ratio statistic is asymptotically χ2‐type distributed. The result is used to obtain EL based confidence interval on the probability density function.  相似文献   

2.
In this paper, we study the construction of confidence intervals for a probability density function under a (positively) associated sample by using the blockwise technique. It is shown that the blockwise empirical likelihood (EL) ratio statistic is asymptotically χ2-typeχ2-type distributed. The result is used to obtain EL-based confidence interval for the probability density function.  相似文献   

3.
In this article, we apply the empirical likelihood method to make inference on the bivariate survival function of paired failure times by estimating the survival function of censored time with the Kaplan–Meier estimator. Adjusted empirical likelihood (AEL) confidence intervals for the bivariate survival function are developed. We conduct a simulation study to compare the proposed AEL method with other methods. The simulation study shows the proposed AEL method has better performance than other existing methods. We illustrate the proposed method by analyzing the skin graft data.  相似文献   

4.
In this paper, we consider the empirical likelihood inferences of the partial functional linear model with missing responses. Two empirical log-likelihood ratios of the parameters of interest are constructed, and the corresponding maximum empirical likelihood estimators of parameters are derived. Under some regularity conditions, we show that the proposed two empirical log-likelihood ratios are asymptotic standard Chi-squared. Thus, the asymptotic results can be used to construct the confidence intervals/regions for the parameters of interest. We also establish the asymptotic distribution theory of corresponding maximum empirical likelihood estimators. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals. An example of real data is also used to illustrate our proposed methods.  相似文献   

5.
In this paper we apply empirical likelihood method to the error density estimators in first-order autoregressive models under some mild conditions. The log-likelihood ratio statistic is shown to be asymptotically chi-squared distributed at a fixed point. In simulation, we show that the empirical likelihood produces confidence intervals having theoretical coverage accuracy which is better than normal approximation.  相似文献   

6.
In this article, we show that the log empirical likelihood ratio statistic for the population mean converges in distribution to χ2(1) as n → ∞ when the population is in the domain of attraction of normal law but has infinite variance. The simulation results show that the empirical likelihood ratio method is applicable under the infinite second moment condition.  相似文献   

7.
The receiver operating characteristic (ROC) curve is one of the most commonly used methods to compare the diagnostic performance of two or more laboratory or diagnostic tests. In this paper, we propose semi-empirical likelihood based confidence intervals for ROC curves of two populations, where one population is parametric and the other one is non-parametric and both have missing data. After imputing missing values, we derive the semi-empirical likelihood ratio statistic and the corresponding likelihood equations. It is shown that the log-semi-empirical likelihood ratio statistic is asymptotically scaled chi-squared. The estimating equations are solved simultaneously to obtain the estimated lower and upper bounds of semi-empirical likelihood confidence intervals. We conduct extensive simulation studies to evaluate the finite sample performance of the proposed empirical likelihood confidence intervals with various sample sizes and different missing probabilities.  相似文献   

8.
ABSTRACT

In this article, partially non linear models when the response variable is measured with error and explanatory variables are measured exactly are considered. Without specifying any error structure equation, a semiparametric dimension reduction technique is employed. Two estimators of unknown parameter in non linear function are obtained and asymptotic normality is proved. In addition, empirical likelihood method for parameter vector is provided. It is shown that the estimated empirical log-likelihood ratio has asymptotic Chi-square distribution. A simulation study indicates that, compared with normal approximation method, empirical likelihood method performs better in terms of coverage probabilities and average length of the confidence intervals.  相似文献   

9.
Distribution function estimation plays a significant role of foundation in statistics since the population distribution is always involved in statistical inference and is usually unknown. In this paper, we consider the estimation of the distribution function of a response variable Y with missing responses in the regression problems. It is proved that the augmented inverse probability weighted estimator converges weakly to a zero mean Gaussian process. A augmented inverse probability weighted empirical log-likelihood function is also defined. It is shown that the empirical log-likelihood converges weakly to the square of a Gaussian process with mean zero and variance one. We apply these results to the construction of Gaussian process approximation based confidence bands and empirical likelihood based confidence bands of the distribution function of Y. A simulation is conducted to evaluate the confidence bands.  相似文献   

10.
In this article, we discuss the construction of the confidence intervals for distribution functions under negatively associated samples. It is shown that the blockwise empirical likelihood (EL) ratio statistic for a distribution function is asymptotically χ2-type distributed. The result is used to obtain an EL-based confidence interval for the distribution function.  相似文献   

11.
ABSTRACT

We investigated the empirical likelihood inference approach under a general class of semiparametric hazards regression models with survival data subject to right-censoring. An empirical likelihood ratio for the full 2p regression parameters involved in the model is obtained. We showed that it converged weakly to a random variable which could be written as a weighted sum of 2p independent chi-squared variables with one degree of freedom. Using this, we could construct a confidence region for parameters. We also suggested an adjusted version for the preceding statistic, whose limit followed a standard chi-squared distribution with 2p degrees of freedom.  相似文献   

12.
This paper is concerned with statistical inference for partially nonlinear models. Empirical likelihood method for parameter in nonlinear function and nonparametric function is investigated. The empirical log-likelihood ratios are shown to be asymptotically chi-square and then the corresponding confidence intervals are constructed. By the empirical likelihood ratio functions, we also obtain the maximum empirical likelihood estimators of the parameter in nonlinear function and nonparametric function, and prove the asymptotic normality. A simulation study indicates that, compared with normal approximation-based method and the bootstrap method, the empirical likelihood method performs better in terms of coverage probabilities and average length/widths of confidence intervals/bands. An application to a real dataset is illustrated.  相似文献   

13.
Suppose that we have a linear regression model Y=Xβ+ν0(X)εY=Xβ+ν0(X)ε with random error εε, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random (MAR). In this paper, based on the ‘complete’ data set for Y after inverse probability weighted imputation, we construct empirical likelihood statistics on EY   and ββ which have the χ2χ2-type limiting distributions under some new conditions compared with Xue (2009). Our results broaden the applicable scope of the approach combined with Xue (2009).  相似文献   

14.
15.
In this article, we study the construction of confidence intervals for regression parameters in a linear model under linear process errors by using the blockwise technique. It is shown that the blockwise empirical likelihood (EL) ratio statistic is asymptotically χ2-type distributed. The result is used to obtain EL based confidence regions for regression parameters. The finite-sample performance of the method is evaluated through a simulation study.  相似文献   

16.
Let X1,…,Xn be some i.i.d. observations from a heavy-tailed distribution F, i.e. the common distribution of the excesses over a high threshold un can be approximated by a generalized Pareto distribution Gγ,σn with γ>0. This paper deals with the problem of finding confidence regions for the couple (γ,σn): combining the empirical likelihood methodology with estimation equations (close but not identical to the likelihood equations) introduced by Zhang (2007), asymptotically valid confidence regions for (γ,σn) are obtained and proved to perform better than Wald-type confidence regions (especially those derived from the asymptotic normality of the maximum likelihood estimators). By profiling out the scale parameter, confidence intervals for the tail index are also derived.  相似文献   

17.
Empirical likelihood for generalized linear models with missing responses   总被引:1,自引:0,他引:1  
The paper uses the empirical likelihood method to study the construction of confidence intervals and regions for regression coefficients and response mean in generalized linear models with missing response. By using the inverse selection probability weighted imputation technique, the proposed empirical likelihood ratios are asymptotically chi-squared. Our approach is to directly calibrate the empirical likelihood ratio, which is called as a bias-correction method. Also, a class of estimators for the parameters of interest is constructed, and the asymptotic distributions of the proposed estimators are obtained. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths/areas of confidence intervals/regions. An example of a real data set is used for illustrating our methods.  相似文献   

18.
To make efficient inference for mean of a response variable when the data are missing at random and the dimension of covariate is not low, we construct three bias-corrected empirical likelihood (EL) methods in conjunction with dimension-reduced kernel estimation of propensity or/and conditional mean response function. Consistency and asymptotic normality of the maximum dimension-reduced EL estimators are established. We further study the asymptotic properties of the resulting dimension-reduced EL ratio functions and the corresponding EL confidence intervals for the response mean are constructed. The finite-sample performance of the proposed estimators is studied through simulation, and an application to HIV-CD4 data set is also presented.  相似文献   

19.
Empirical likelihood based variable selection   总被引:1,自引:0,他引:1  
Information criteria form an important class of model/variable selection methods in statistical analysis. Parametric likelihood is a crucial part of these methods. In some applications such as the generalized linear models, the models are only specified by a set of estimating functions. To overcome the non-availability of well defined likelihood function, the information criteria under empirical likelihood are introduced. Under this setup, we successfully solve the existence problem of the profile empirical likelihood due to the over constraint in variable selection problems. The asymptotic properties of the new method are investigated. The new method is shown to be consistent at selecting the variables under mild conditions. Simulation studies find that the proposed method has comparable performance to the parametric information criteria when a suitable parametric model is available, and is superior when the parametric model assumption is violated. A real data set is also used to illustrate the usefulness of the new method.  相似文献   

20.
In this article, we consider how to construct the confidence regions of the unknown parameters for partially linear single-index models with endogenous covariates. To eliminate the influence of the endogenous covariates, an empirical likelihood method is proposed based on instrumental variables. Under some regularly conditions, the asymptotic distribution of the proposed empirical log-likelihood ratio is proved to be a Chi-squared distribution. We investigate the finite-sample performance of the proposed method via simulation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号