首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
Multivariate normal, due to its well-established theories, is commonly utilized to analyze correlated data of various types. However, the validity of the resultant inference is, more often than not, erroneous if the model assumption fails. We present a modification for making the multivariate normal likelihood acclimatize itself to general correlated data. The modified likelihood is asymptotically legitimate for any true underlying joint distributions so long as they have finite second moments. One can, hence, acquire full likelihood inference without knowing the true random mechanisms underlying the data. Simulations and real data analysis are provided to demonstrate the merit of our proposed parametric robust method.  相似文献   

2.
吴浩  彭非 《统计研究》2020,37(4):114-128
倾向性得分是估计平均处理效应的重要工具。但在观察性研究中,通常会由于协变量在处理组与对照组分布的不平衡性而导致极端倾向性得分的出现,即存在十分接近于0或1的倾向性得分,这使得因果推断的强可忽略假设接近于违背,进而导致平均处理效应的估计出现较大的偏差与方差。Li等(2018a)提出了协变量平衡加权法,在无混杂性假设下通过实现协变量分布的加权平衡,解决了极端倾向性得分带来的影响。本文在此基础上,提出了基于协变量平衡加权法的稳健且有效的估计方法,并通过引入超级学习算法提升了模型在实证应用中的稳健性;更进一步,将前一方法推广至理论上不依赖于结果回归模型和倾向性得分模型假设的基于协变量平衡加权的稳健有效估计。蒙特卡洛模拟表明,本文提出的两种方法在结果回归模型和倾向性得分模型均存在误设时仍具有极小的偏差和方差。实证部分将两种方法应用于右心导管插入术数据,发现右心导管插入术大约会增加患者6. 3%死亡率。  相似文献   

3.
When using the co-twin control design for analysis of event times, one needs a model to address the possible within-pair association. One such model is the shared frailty model in which the random frailty variable creates the desired within-pair association. Standard inference for this model requires independence between the random effect and the covariates. We study how violations of this assumption affect inference for the regression coefficients and conclude that substantial bias may occur. We propose an alternative way of making inference for the regression parameters by using a fixed-effects models for survival in matched pairs. Fitting this model to data generated from the frailty model provides consistent and asymptotically normal estimates of regression coefficients, no matter whether the independence assumption is met.  相似文献   

4.
Merging information for semiparametric density estimation   总被引:1,自引:0,他引:1  
Summary.  The density ratio model specifies that the likelihood ratio of m −1 probability density functions with respect to the m th is of known parametric form without reference to any parametric model. We study the semiparametric inference problem that is related to the density ratio model by appealing to the methodology of empirical likelihood. The combined data from all the samples leads to more efficient kernel density estimators for the unknown distributions. We adopt variants of well-established techniques to choose the smoothing parameter for the density estimators proposed.  相似文献   

5.
Copulas characterize the dependence among components of random vectors. Unlike marginal and joint distributions, which are directly observable, the copula of a random vector is a hidden dependence structure that links the joint distribution with its margins. Choosing a parametric copula model is thus a nontrivial task but it can be facilitated by relying on a nonparametric estimator. Here the authors propose a kernel estimator of the copula that is mean square consistent everywhere on the support. They determine the bias and variance of this estimator. They also study the effects of kernel smoothing on copula estimation. They then propose a smoothing bandwidth selection rule based on the derived bias and variance. After confirming their theoretical findings through simulations, they use their kernel estimator to formulate a goodness-of-fit test for parametric copula models.  相似文献   

6.
In this paper, we consider improved estimating equations for semiparametric partial linear models (PLM) for longitudinal data, or clustered data in general. We approximate the non‐parametric function in the PLM by a regression spline, and utilize quadratic inference functions (QIF) in the estimating equations to achieve a more efficient estimation of the parametric part in the model, even when the correlation structure is misspecified. Moreover, we construct a test which is an analogue to the likelihood ratio inference function for inferring the parametric component in the model. The proposed methods perform well in simulation studies and real data analysis conducted in this paper.  相似文献   

7.
Since the publication of the seminal paper by Cox (1972), proportional hazard model has become very popular in regression analysis for right censored data. In observational studies, treatment assignment may depend on observed covariates. If these confounding variables are not accounted for properly, the inference based on the Cox proportional hazard model may perform poorly. As shown in Rosenbaum and Rubin (1983), under the strongly ignorable treatment assignment assumption, conditioning on the propensity score yields valid causal effect estimates. Therefore we incorporate the propensity score into the Cox model for causal inference with survival data. We derive the asymptotic property of the maximum partial likelihood estimator when the model is correctly specified. Simulation results show that our method performs quite well for observational data. The approach is applied to a real dataset on the time of readmission of trauma patients. We also derive the asymptotic property of the maximum partial likelihood estimator with a robust variance estimator, when the model is incorrectly specified.  相似文献   

8.
Abstract

This article introduces a parametric robust way of comparing two population means and two population variances. With large samples the comparison of two means, under model misspecification, is lesser a problem, for, the validity of inference is protected by the central limit theorem. However, the assumption of normality is generally required, so that the inference for the ratio of two variances can be carried out by the familiar F statistic. A parametric robust approach that is insensitive to the distributional assumption will be proposed here. More specifically, it will be demonstrated that the normal likelihood function can be adjusted for asymptotically valid inferences for all underlying distributions with finite fourth moments. The normal likelihood function, on the other hand, is itself robust for the comparison of two means so that no adjustment is needed.  相似文献   

9.
Non‐random sampling is a source of bias in empirical research. It is common for the outcomes of interest (e.g. wage distribution) to be skewed in the source population. Sometimes, the outcomes are further subjected to sample selection, which is a type of missing data, resulting in partial observability. Thus, methods based on complete cases for skew data are inadequate for the analysis of such data and a general sample selection model is required. Heckman proposed a full maximum likelihood estimation method under the normality assumption for sample selection problems, and parametric and non‐parametric extensions have been proposed. We generalize Heckman selection model to allow for underlying skew‐normal distributions. Finite‐sample performance of the maximum likelihood estimator of the model is studied via simulation. Applications illustrate the strength of the model in capturing spurious skewness in bounded scores, and in modelling data where logarithm transformation could not mitigate the effect of inherent skewness in the outcome variable.  相似文献   

10.
During recent years, analysts have been relying on approximate methods of inference to estimate multilevel models for binary or count data. In an earlier study of random-intercept models for binary outcomes we used simulated data to demonstrate that one such approximation, known as marginal quasi-likelihood, leads to a substantial attenuation bias in the estimates of both fixed and random effects whenever the random effects are non-trivial. In this paper, we fit three-level random-intercept models to actual data for two binary outcomes, to assess whether refined approximation procedures, namely penalized quasi-likelihood and second-order improvements to marginal and penalized quasi-likelihood, also underestimate the underlying parameters. The extent of the bias is assessed by two standards of comparison: exact maximum likelihood estimates, based on a Gauss–Hermite numerical quadrature procedure, and a set of Bayesian estimates, obtained from Gibbs sampling with diffuse priors. We also examine the effectiveness of a parametric bootstrap procedure for reducing the bias. The results indicate that second-order penalized quasi-likelihood estimates provide a considerable improvement over the other approximations, but all the methods of approximate inference result in a substantial underestimation of the fixed and random effects when the random effects are sizable. We also find that the parametric bootstrap method can eliminate the bias but is computationally very intensive.  相似文献   

11.
The causal effect of a treatment is estimated at different levels of treatment compliance, in a placebo-controlled trial on the reduction of blood pressure. The structural nested mean model makes no direct assumptions on selected treatment compliance levels and placebo prognosis but relies on the randomization assumption and a parametric form for causal effects. It can be seen as a regression model for unpaired data, where pre- and post-randomization covariables are treated differently. The causal parameters are found as solutions to estimating equations involving estimated placebo response and treatment compliance based on base-line covariates for all subjects. Our example considers a linear effect of the percentage of prescribed dose taken on achieved diastolic blood pressure reduction. We propose an exploration of structural model checks. In the example, this reveals an interaction between the causal effect of active dose taken and the base-line body weight of the patient.  相似文献   

12.
Abstract. We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed non‐parametric prior probability models allow the shape of the error density to adapt to the data and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models that allow the error distribution to change non‐parametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets.  相似文献   

13.
The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology is well-known to provide powerful likelihood ratio tests. In the nonparametric context, the classical empirical likelihood (EL) ratio method is often applied in order to efficiently approximate properties of parametric likelihoods, using an approach based on substituting empirical distribution functions for their population counterparts. The optimal parametric likelihood ratio approach is however based on density functions. We develop and analyze the EL ratio approach based on densities in order to test the IG model fit. We show that the proposed test is an improvement over the entropy-based goodness-of-fit test for IG presented by Mudholkar and Tian (2002). Theoretical support is obtained by proving consistency of the new test and an asymptotic proposition regarding the null distribution of the proposed test statistic. Monte Carlo simulations confirm the powerful properties of the proposed method. Real data examples demonstrate the applicability of the density-based EL ratio goodness-of-fit test for an IG assumption in practice.  相似文献   

14.
We propose a semiparametric modeling approach for mixtures of symmetric distributions. The mixture model is built from a common symmetric density with different components arising through different location parameters. This structure ensures identifiability for mixture components, which is a key feature of the model as it allows applications to settings where primary interest is inference for the subpopulations comprising the mixture. We focus on the two-component mixture setting and develop a Bayesian model using parametric priors for the location parameters and for the mixture proportion, and a nonparametric prior probability model, based on Dirichlet process mixtures, for the random symmetric density. We present an approach to inference using Markov chain Monte Carlo posterior simulation. The performance of the model is studied with a simulation experiment and through analysis of a rainfall precipitation data set as well as with data on eruptions of the Old Faithful geyser.  相似文献   

15.
The hidden Markov model regression (HMMR) has been popularly used in many fields such as gene expression and activity recognition. However, the traditional HMMR requires the strong linearity assumption for the emission model. In this article, we propose a hidden Markov model with non-parametric regression (HMM-NR), where the mean and variance of emission model are unknown smooth functions. The new semiparametric model might greatly reduce the modeling bias and thus enhance the applicability of the traditional hidden Markov model regression. We propose an estimation procedure for the transition probability matrix and the non-parametric mean and variance functions by combining the ideas of the EM algorithm and the kernel regression. Simulation studies and a real data set application are used to demonstrate the effectiveness of the new estimation procedure.  相似文献   

16.
This article presents a semiparametric method for estimating receiver operating characteristic surface under density ratio model. The construction of the proposed method is based on the adjacent-category logit model and the empirical likelihood approach. A bootstrap approach for the VUS estimator inference is presented. In a simulation study, the proposed estimator is compared with the existing parametric and nonparametric estimators in terms of bias, standard error, and mean square error. Finally, a real data example and some discussions on the proposed method are provided.  相似文献   

17.
Summary.  Problems of the analysis of data with incomplete observations are all too familiar in statistics. They are doubly difficult if we are also uncertain about the choice of model. We propose a general formulation for the discussion of such problems and develop approximations to the resulting bias of maximum likelihood estimates on the assumption that model departures are small. Loss of efficiency in parameter estimation due to incompleteness in the data has a dual interpretation: the increase in variance when an assumed model is correct; the bias in estimation when the model is incorrect. Examples include non-ignorable missing data, hidden confounders in observational studies and publication bias in meta-analysis. Doubling variances before calculating confidence intervals or test statistics is suggested as a crude way of addressing the possibility of undetectably small departures from the model. The problem of assessing the risk of lung cancer from passive smoking is used as a motivating example.  相似文献   

18.
Identifiability is a primary assumption in virtually all classical statistical theory. However, such an assumption may be violated in a variety of statistical models. We consider parametric models where the assumption of identifiability is violated, but otherwise satisfy standard assumptions. We propose an analytic method for constructing new parameters under which the model will be at least locally identifiable. This method is based on solving a system of linear partial differential equations involving the Fisher information matrix. Some consequences and valid inference procedures under non-identifiability have been discussed. The method of reparametrization is illustrated with an example.  相似文献   

19.
In this work, we propose a new model called generalized symmetrical partial linear model, based on the theory of generalized linear models and symmetrical distributions. In our model the response variable follows a symmetrical distribution such a normal, Student-t, power exponential, among others. Following the context of generalized linear models we consider replacing the traditional linear predictors by the more general predictors in whose case one covariate is related with the response variable in a non-parametric fashion, that we do not specified the parametric function. As an example, we could imagine a regression model in which the intercept term is believed to vary in time or geographical location. The backfitting algorithm is used for estimating the parameters of the proposed model. We perform a simulation study for assessing the behavior of the penalized maximum likelihood estimators. We use the quantile residuals for checking the assumption of the model. Finally, we analyzed real data set related with pH rivers in Ireland.  相似文献   

20.
朱慧明等 《统计研究》2014,31(7):97-104
针对不可观测异质性非时变假设导致的删失变量偏差及推断无效问题,构建贝叶斯隐马尔科夫异质面板模型,刻画截面个体间的动态时变不可观测异质性,诊断经济系统环境中可能存在的隐性变点,设计相应的马尔科夫链蒙特卡洛抽样算法估计模型参数,并对中国各地区的金融发展与城乡收入差距关系进行实证分析,捕捉到金融发展与城乡收入差距间长期稳定关系的隐性变化,发现了区域个体不可观测异质性存在的动态时变特征。研究结果表明各参数的迭代轨迹收敛且估计误差非常小,验证了贝叶斯隐马尔科夫异质面板模型的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号