首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
In the literature, there are many results on the consequences of mis-specified models for linear models with error in the response only, see, e.g., Seber(1977). There are also discussions of estimation for the model writh errors both in the response and in the predictor variables (called measurement error models; see, e.g., Fuller(1987)). In this paper, we consider the problem of model mis-specification for measurement error models. Only a few special cases have been tackled in the past (Edland, 1996; Carroll and Ruppert, 1996 and Lakshminarayanan Amp; Gunst, 1984); we deal with the situation here in some generality. Results have been obtained as follows: (a) When a model is under-fitted, the estimate of the variance of the measurement error will be asymptotically biased, as will the regression coefficients, and the asymptotic biases in the estimates of the regression coefficients will always exist for under-fitted models. Even orthogonality of the variables in the model will not make the biases vanish. (b)For over-fitting, the estimates of the variances of measurement errors and of the regression coefficients are asymptotically unbiased. However, the variance of the estimated regression coefficients will increase. Over-fitting will cause larger changes in the variances of the estimated parameters in measurement error models than in no measurement error models.  相似文献   

3.
This paper deals with the linear regression model with measurement errors in both response and covariates. The variables are observed with errors together with an auxiliary variable, such as time, and the errors in response are autocorrelated. We propose a weighted denoised minimum distance estimator (WDMDE) for the regression coefficients. The consistency, asymptotic normality, and strong convergence rate of the WDMDE are proved. Compared with the usual denoised least squares estimator (DLSE) in the previous literature, the WDMDE is asymptotically more efficient in the sense of having smaller variances. It also avoids undersmoothing the regressor functions over the auxiliary variable, so that data-driven optimal choice of the bandwidth can be used. Furthermore, we consider the fitting of the error structure, construct the estimators of the autocorrelation coefficients and the error variances, and derive their large-sample properties. Simulations are conducted to examine the finite sample performance of the proposed estimators, and an application of our methodology to analyze a set of real data is illustrated as well.  相似文献   

4.
The problem of consistent estimation of regression coefficients in a multivariate linear ultrastructural measurement error model is considered in this article when some additional information on regression coefficients is available a priori. Such additional information is expressible in the form of stochastic linear restrictions. Utilizing stochastic restrictions given a priori, some methodologies are presented to obtain the consistent estimators of regression coefficients under two types of additional information separately, viz., covariance matrix of measurement errors and reliability matrix associated with explanatory variables. The measurement errors are assumed to be not necessarily normally distributed. The asymptotic properties of the proposed estimators are derived and analyzed analytically as well as numerically through a Monte Carlo simulation experiment.  相似文献   

5.
赵明涛  许晓丽 《统计研究》2019,36(10):115-128
纵向数据是随着时间变化对个体进行重复观测而得到的一种相关性数据,广泛出现在诸多科学研究领域。在对个体进行观测时,测量误差不可避免,忽略测量误差往往会导致有偏估计。本文利用二次推断函数方法研究关于纵向数据的参数部分和非参数部分协变量均含有测量误差的部分线性变系数测量误差(errors-in-variables, EV)模型的估计问题。利用B样条逼近模型中的未知系数函数,构造关于回归参数和B样条系数的偏差修正的二次推断函数以处理个体内相关性和测量误差,得到回归参数和变系数的偏差修正的二次推断函数估计,然后证明了估计方法和结果的渐近性质。数值模拟和实例数据分析结果显示本文提出的方法具有一定的实用价值。  相似文献   

6.
Increasing attention is being given to problems involving binary outcomes with covariates subject to measurement error. Here, we consider the two group normal discriminant model where a subset of the continuous variates are subject to error and will typically be replaced by a vector of surrogates, perhaps of different dimension. Correcting for the measurement error is made possible by a double sampling scheme in which the surrogates are collected on all units and true values are obtained on a random subset of units. Such a scheme allows us to consider a rich set of measurement error models which extend the traditional additive error model. Maximum likelihood estimators and their asymptotic properties are derived under a variety of models for the relationship between true values and the surrogates. Specific attention is given to the coefficients in the resulting logistic regression model. Optimal allocations are derived which minimize the variance of the estimated slope subject to cost constraints for the case where there is a univariate covariate but a possibly multivariate surrogate.  相似文献   

7.
We consider a replicated ultrastructural measurement error regression model where predictor variables are observed with error. It is assumed that some prior information regarding the regression coefficients is available in the form of exact linear restrictions. Three classes of estimators of regression coefficients are proposed. These estimators are shown to be consistent as well as satisfying the given restrictions. The asymptotic properties of unrestricted as well as restricted estimators are studied without imposing any distributional assumption on any random component of the model. A Monte Carlo simulations study is performed to assess the effect of sample size, replicates and non-normality on the estimators.  相似文献   

8.
The measurement error model (MEM) is an important model in statistics because in a regression problem, the measurement error of the explanatory variable will seriously affect the statistical inferences if measurement errors are ignored. In this paper, we revisit the MEM when both the response and explanatory variables are further involved with rounding errors. Additionally, the use of a normal mixture distribution to increase the robustness of model misspecification for the distribution of the explanatory variables in measurement error regression is in line with recent developments. This paper proposes a new method for estimating the model parameters. It can be proved that the estimates obtained by the new method possess the properties of consistency and asymptotic normality.  相似文献   

9.
This paper considers the problem of estimating the linear parameters of a Generalised Linear Model (GLM) when the explanatory variable is subject to measurement error. In this situation the induced model for dependence on the approximate explanatory variable is not usually of GLM form. However, when the distribution of measurement error is known or estimated from replicated measurements, application of the GLIM iteratively reweighted least squares algorithm with transformed data and weighting is shown to produce maximum quasi likelihood estimates in many cases. Details of this approach are given for two particular generalized linear models; simulation results illustrate the usefulness of the theory for these models.  相似文献   

10.
Bivariate correlation coefficients (BCCs) are often calculated to gauge the relationship between two variables in medical research. In a family-type clustered design where multiple participants from same units/families are enrolled, BCCs can be defined and estimated at various hierarchical levels (subject level, family level and marginal BCC). Heterogeneity usually exists between subject groups and, as a result, subject level BCCs may differ between subject groups. In the framework of bivariate linear mixed effects modeling, we define and estimate BCCs at various hierarchical levels in a family-type clustered design, accommodating subject group heterogeneity. Simplified and modified asymptotic confidence intervals are constructed to the BCC differences and Wald type tests are conducted. A real-world family-type clustered study of Alzheimer disease (AD) is analyzed to estimate and compare BCCs among well-established AD biomarkers between mutation carriers and non-carriers in autosomal dominant AD asymptomatic individuals. Extensive simulation studies are conducted across a wide range of scenarios to evaluate the performance of the proposed estimators and the type-I error rate and power of the proposed statistical tests.Abbreviations: BCC: bivariate correlation coefficient; BLM: bivariate linear mixed effects model; CI: confidence interval; AD: Alzheimer’s disease; DIAN: The Dominantly Inherited Alzheimer Network; SA: simple asymptotic; MA: modified asymptoticKEYWORDS: Bivariate correlation coefficient, bivariate linear mixed effects model, parameter estimation, confidence interval, hypothesis testing, type-I error/size and power  相似文献   

11.
Xue H  Miao H  Wu H 《Annals of statistics》2010,38(4):2351-2387
This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge-Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the p-order numerical algorithm goes to zero at a rate faster than n(-1/(p∧4)), the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we have shown that the numerical solution-based NLS estimator and the sieve NLS estimator are strongly consistent. The sieve estimator of constant parameters is asymptotically normal with the same asymptotic co-variance as that of the case where the true ODE solution is exactly known, while the estimator of the time-varying parameter has the optimal convergence rate under some regularity conditions. The theoretical results are also developed for the case when the step size of the ODE numerical solver does not go to zero fast enough or the numerical error is comparable to the measurement error. We illustrate our approach with both simulation studies and clinical data on HIV viral dynamics.  相似文献   

12.
This paper generalizes the tolerance interval approach for assessing agreement between two methods of continuous measurement for repeated measurement data—a common scenario in applications. The repeated measurements may be longitudinal or they may be replicates of the same underlying measurement. Our approach is to first model the data using a mixed model and then construct a relevant asymptotic tolerance interval (or band) for the distribution of appropriately defined differences. We present the methodology in the general context of a mixed model that can incorporate covariates, heteroscedasticity and serial correlation in the errors. Simulation for the no-covariate case shows good small-sample performance of the proposed methodology. For the longitudinal data, we also describe an extension for the case when the observed time profiles are modelled nonparametrically through penalized splines. Two real data applications are presented.  相似文献   

13.
In this article, we propose a semi-parametric mode regression for a non linear model. We use an expectation-maximization algorithm in order to estimate the regression coefficients of modal non linear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.  相似文献   

14.
Short-term forecasting of wind generation requires a model of the function for the conversion of meteorological variables (mainly wind speed) to power production. Such a power curve is nonlinear and bounded, in addition to being nonstationary. Local linear regression is an appealing nonparametric approach for power curve estimation, for which the model coefficients can be tracked with recursive Least Squares (LS) methods. This may lead to an inaccurate estimate of the true power curve, owing to the assumption that a noise component is present on the response variable axis only. Therefore, this assumption is relaxed here, by describing a local linear regression with orthogonal fit. Local linear coefficients are defined as those which minimize a weighted Total Least Squares (TLS) criterion. An adaptive estimation method is introduced in order to accommodate nonstationarity. This has the additional benefit of lowering the computational costs of updating local coefficients every time new observations become available. The estimation method is based on tracking the left-most eigenvector of the augmented covariance matrix. A robustification of the estimation method is also proposed. Simulations on semi-artificial datasets (for which the true power curve is available) underline the properties of the proposed regression and related estimation methods. An important result is the significantly higher ability of local polynomial regression with orthogonal fit to accurately approximate the target regression, even though it may hardly be visible when calculating error criteria against corrupted data.  相似文献   

15.
Methods have been developed by several authors to address the problem of bias in regression coefficients due to errors in exposure measurement. These approaches typically assume that there is one surrogate for each exposure. Occupational exposures are quite complex and are often described by characteristics of the workplace and the amount of time that one has worked in a particular area. In this setting, there are several surrogates which are used to define an individual's exposure. To analyze this type of data, regression calibration methodology is extended to adjust the estimates of exposure-response associations for the bias and additional uncertainty due to exposure measurement error from multiple surrogates. The health outcome is assumed to be binary and related to the quantitative measure of exposure by a logistic link function. The model for the conditional mean of the quantitative exposure measurement in relation to job characteristics is assumed to be linear. This approach is applied to a cross-sectional epidemiologic study of lung function in relation to metal working fluid exposure and the corresponding exposure assessment study with quantitative measurements from personal monitors. A simulation study investigates the performance of the proposed estimator for various values of the baseline prevalence of disease, exposure effect and measurement error variance. The efficiency of the proposed estimator relative to the one proposed by Carroll et al. [1995. Measurement Error in Nonlinear Models. Chapman & Hall, New York] is evaluated numerically for the motivating example. User-friendly and fully documented Splus and SAS routines implementing these methods are available (http://www.hsph.harvard.edu/faculty/spiegelman/multsurr.html).  相似文献   

16.
The proportional hazards regression model is commonly used to evaluate the relationship between survival and covariates. Covariates are frequently measured with error. Substituting mismeasured values for the true covariates leads to biased estimation. Hu et al. (Biometrics 88 (1998) 447) have proposed to base estimation in the proportional hazards model with covariate measurement error on a joint likelihood for survival and the covariate variable. Nonparametric maximum likelihood estimation (NPMLE) was used and simulations were conducted to assess the asymptotic validity of this approach. In this paper, we derive a rigorous proof of asymptotic normality of the NPML estimators.  相似文献   

17.
In this article, the two-way error component regression model is considered. For the nonhomogenous linear hypothesis testing of regression coefficients, a parametric bootstrap (PB) approach is proposed. Simulation results indicate that the PB test, regardless of the sample sizes, maintains the Type I error rates very well and outperforms the existing generalized variable test, which may far exceed the intended significance level when the sample sizes are small or moderate. Real data examples illustrate the proposed approach work quite satisfactorily.  相似文献   

18.
A structural regression model is considered in which some of the variables are measured with error. Instead of additive measurement errors, systematic biases are allowed by relating true and observed values via simple linear regressions. Additional data is available, based on standards, which allows for “calibration” of the measuring methods involved. Using only moment assumptions, some simple estimators are proposed and their asymptotic properties are developed. The results parallel and extend those given by Fuller (1987) in which the errors are additive and the error covariance is estimated. Maximum likelihood estimation is also discussed and the problem is illustrated using data from an acid rain study in which the relationship between pH and alkalinity is of interest but neither variable is observed exactly.  相似文献   

19.
We study a semivarying coefficient model where the regressors are generated by the multivariate unit root I(1) processes. The influence of the explanatory vectors on the response variable satisfies the semiparametric partially linear structure with the nonlinear component being functional coefficients. A semiparametric estimation methodology with the first-stage local polynomial smoothing is applied to estimate both the constant coefficients in the linear component and the functional coefficients in the nonlinear component. The asymptotic distribution theory for the proposed semiparametric estimators is established under some mild conditions, from which both the parametric and nonparametric estimators are shown to enjoy the well-known super-consistency property. Furthermore, a simulation study is conducted to investigate the finite sample performance of the developed methodology and results.  相似文献   

20.
Proportional hazards model with the biomarker–treatment interaction plays an important role in the survival analysis of the subset treatment effect. A threshold parameter for a continuous biomarker variable defines the subset of patients who can benefit or lose from a certain new treatment. In this article, we focus on a continuous threshold effect using the rectified linear unit and propose a gradient descent method to obtain the maximum likelihood estimation of the regression coefficients and the threshold parameter simultaneously. Under certain regularity conditions, we prove the consistency, asymptotic normality and provide a robust estimate of the covariance matrix when the model is misspecified. To illustrate the finite sample properties of the proposed methods, we simulate data to evaluate the empirical biases, the standard errors and the coverage probabilities for both the correctly specified models and misspecified models. The proposed continuous threshold model is applied to a prostate cancer data with serum prostatic acid phosphatase as a biomarker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号