首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The choice of the model framework in a regression setting depends on the nature of the data. The focus of this study is on changepoint data, exhibiting three phases: incoming and outgoing, both of which are linear, joined by a curved transition. Bent-cable regression is an appealing statistical tool to characterize such trajectories, quantifying the nature of the transition between the two linear phases by modeling the transition as a quadratic phase with unknown width. We demonstrate that a quadratic function may not be appropriate to adequately describe many changepoint data. We then propose a generalization of the bent-cable model by relaxing the assumption of the quadratic bend. The properties of the generalized model are discussed and a Bayesian approach for inference is proposed. The generalized model is demonstrated with applications to three data sets taken from environmental science and economics. We also consider a comparison among the quadratic bent-cable, generalized bent-cable and piecewise linear models in terms of goodness of fit in analyzing both real-world and simulated data. This study suggests that the proposed generalization of the bent-cable model can be valuable in adequately describing changepoint data that exhibit either an abrupt or gradual transition over time.  相似文献   

2.
We consider Bayesian analysis of a class of multiple changepoint models. While there are a variety of efficient ways to analyse these models if the parameters associated with each segment are independent, there are few general approaches for models where the parameters are dependent. Under the assumption that the dependence is Markov, we propose an efficient online algorithm for sampling from an approximation to the posterior distribution of the number and position of the changepoints. In a simulation study, we show that the approximation introduced is negligible. We illustrate the power of our approach through fitting piecewise polynomial models to data, under a model which allows for either continuity or discontinuity of the underlying curve at each changepoint. This method is competitive with, or outperform, other methods for inferring curves from noisy data; and uniquely it allows for inference of the locations of discontinuities in the underlying curve.  相似文献   

3.
In this paper, changepoint analysis is applied to stochastic volatility (SV) models which aim to understand the locations and movements of high frequency FX financial time series. Bayesian inference using the Markov Chain Monte Carlo method is performed using a process called variable dimension for SV parameters. Interesting results are that FX series have locations where one or more positions of the sequence correspond to systemic changes, and overall non-stationarity, in the returns process. Furthermore, we found that the changepoint locations provide an informative estimate for all FX series. Importantly in most cases, the detected changepoints can be identified with economic factors relevant to the country concerned. This helps support the fact that macroeconomics news and the movement in financial price are positively related.  相似文献   

4.
We demonstrate how to perform direct simulation from the posterior distribution of a class of multiple changepoint models where the number of changepoints is unknown. The class of models assumes independence between the posterior distribution of the parameters associated with segments of data between successive changepoints. This approach is based on the use of recursions, and is related to work on product partition models. The computational complexity of the approach is quadratic in the number of observations, but an approximate version, which introduces negligible error, and whose computational cost is roughly linear in the number of observations, is also possible. Our approach can be useful, for example within an MCMC algorithm, even when the independence assumptions do not hold. We demonstrate our approach on coal-mining disaster data and on well-log data. Our method can cope with a range of models, and exact simulation from the posterior distribution is possible in a matter of minutes.  相似文献   

5.
6.
In this paper, we consider the problem of estimating a single changepoint in a parameter‐driven model. The model – an extension of the Poisson regression model – accounts for serial correlation through a latent process incorporated in its mean function. Emphasis is placed on the changepoint characterization with changes in the parameters of the model. The model is fully implemented within the Bayesian framework. We develop a RJMCMC algorithm for parameter estimation and model determination. The algorithm embeds well‐devised Metropolis–Hastings procedures for estimating the missing values of the latent process through data augmentation and the changepoint. The methodology is illustrated using data on monthly counts of claimants collecting wage loss benefit for injuries in the workplace and an analysis of presidential uses of force in the USA.  相似文献   

7.
Summary.  The reciprocal of serum creatinine concentration, RC, is often used as a biomarker to monitor renal function. It has been observed that RC trajectories remain relatively stable after transplantation until a certain moment, when an irreversible decrease in the RC levels occurs. This decreasing trend commonly precedes failure of a graft. Two subsets of individuals can be distinguished according to their RC trajectories: a subset of individuals having stable RC levels and a subset of individuals who present an irrevocable decrease in their RC levels. To describe such data, the paper proposes a joint latent class model for longitudinal and survival data with two latent classes. RC trajectories within latent class one are modelled by an intercept-only random-effects model and RC trajectories within latent class two are modelled by a segmented random changepoint model. A Bayesian approach is used to fit this joint model to data from patients who had their first kidney transplantation in the Leiden University Medical Center between 1983 and 2002. The resulting model describes the kidney transplantation data very well and provides better predictions of the time to failure than other joint and survival models.  相似文献   

8.
Summary.  Longitudinal modelling of lung function in Duchenne's muscular dystrophy is complicated by a mixture of both growth and decline in lung function within each subject, an unknown point of separation between these phases and significant heterogeneity between individual trajectories. Linear mixed effects models can be used, assuming a single changepoint for all cases; however, this assumption may be incorrect. The paper describes an extension of linear mixed effects modelling in which random changepoints are integrated into the model as parameters and estimated by using a stochastic EM algorithm. We find that use of this 'mixture modelling' approach improves the fit significantly.  相似文献   

9.
In clinical practice, the profile of each subject's CD4 response from a longitudinal study may follow a ‘broken stick’ like trajectory, indicating multiple phases of increase and/or decline in response. Such multiple phases (changepoints) may be important indicators to help quantify treatment effect and improve management of patient care. Although it is a common practice to analyze complex AIDS longitudinal data using nonlinear mixed-effects (NLME) or nonparametric mixed-effects (NPME) models in the literature, NLME or NPME models become a challenge to estimate changepoint due to complicated structures of model formulations. In this paper, we propose a changepoint mixed-effects model with random subject-specific parameters, including the changepoint for the analysis of longitudinal CD4 cell counts for HIV infected subjects following highly active antiretroviral treatment. The longitudinal CD4 data in this study may exhibit departures from symmetry, may encounter missing observations due to various reasons, which are likely to be non-ignorable in the sense that missingness may be related to the missing values, and may be censored at the time of the subject going off study-treatment, which is a potentially informative dropout mechanism. Inferential procedures can be complicated dramatically when longitudinal CD4 data with asymmetry (skewness), incompleteness and informative dropout are observed in conjunction with an unknown changepoint. Our objective is to address the simultaneous impact of skewness, missingness and informative censoring by jointly modeling the CD4 response and dropout time processes under a Bayesian framework. The method is illustrated using a real AIDS data set to compare potential models with various scenarios, and some interested results are presented.  相似文献   

10.
ABSTRACT

This work presents advanced computational aspects of a new method for changepoint detection on spatio-temporal point process data. We summarize the methodology, based on building a Bayesian hierarchical model for the data and declaring prior conjectures on the number and positions of the changepoints, and show how to take decisions regarding the acceptance of potential changepoints. The focus of this work is about choosing an approach that detects the correct changepoint and delivers smooth reliable estimates in a feasible computational time; we propose Bayesian P-splines as a suitable tool for managing spatial variation, both under a computational and a model fitting performance perspective. The main computational challenges are outlined and a solution involving parallel computing in R is proposed and tested on a simulation study. An application is also presented on a data set of seismic events in Italy over the last 20 years.  相似文献   

11.
Extending previous work on hedge fund return predictability, this paper introduces the idea of modelling the conditional distribution of hedge fund returns using Student's t full-factor multivariate GARCH models. This class of models takes into account the stylized facts of hedge fund return series, that is, heteroskedasticity, fat tails and deviations from normality. For the proposed class of multivariate predictive regression models, we derive analytic expressions for the score and the Hessian matrix, which can be used within classical and Bayesian inferential procedures to estimate the model parameters, as well as to compare different predictive regression models. We propose a Bayesian approach to model comparison which provides posterior probabilities for various predictive models that can be used for model averaging. Our empirical application indicates that accounting for fat tails and time-varying covariances/correlations provides a more appropriate modelling approach of the underlying dynamics of financial series and improves our ability to predict hedge fund returns.  相似文献   

12.
Multiple time series of scalp electrical potential activity are generated routinely in electroencephalographic (EEG) studies. Such recordings provide important non-invasive data about brain function in human neuropsychiatric disorders. Analyses of EEG traces aim to isolate characteristics of their spatiotemporal dynamics that may be useful in diagnosis, or may improve the understanding of the underlying neurophysiology or may improve treatment through identifying predictors and indicators of clinical outcomes. We discuss the development and application of non-stationary time series models for multiple EEG series generated from individual subjects in a clinical neuropsychiatric setting. The subjects are depressed patients experiencing generalized tonic–clonic seizures elicited by electroconvulsive therapy (ECT) as antidepressant treatment. Two varieties of models—dynamic latent factor models and dynamic regression models—are introduced and studied. We discuss model motivation and form, and aspects of statistical analysis including parameter identifiability, posterior inference and implementation of these models via Markov chain Monte Carlo techniques. In an application to the analysis of a typical set of 19 EEG series recorded during an ECT seizure at different locations over a patient's scalp, these models reveal time-varying features across the series that are strongly related to the placement of the electrodes. We illustrate various model outputs, the exploration of such time-varying spatial structure and its relevance in the ECT study, and in basic EEG research in general.  相似文献   

13.
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with mixture models. Furthermore, in some of the examples we could exploit INLA within MCMC to make joint inference on an ensemble of model parameters.  相似文献   

14.
With the growing availability of high-frequency data, long memory has become a popular topic in finance research. Fractionally Integrated GARCH (FIGARCH) model is a standard approach to study the long memory of financial volatility. The original specification of FIGARCH model is developed using Normal distribution, which cannot accommodate fat-tailed properties commonly existing in financial time series. Traditionally, the Student-t distribution and General Error Distribution (GED) are used instead to solve that problem. However, a recent study points out that the Student-t lacks stability. Instead, the Stable distribution is introduced. The issue of this distribution is that its second moment does not exist. To overcome this new problem, the tempered stable distribution, which retains most attractive characteristics of the Stable distribution and has defined moments, is a natural candidate. In this paper, we describe the estimation procedure of the FIGARCH model with tempered stable distribution and conduct a series of simulation studies to demonstrate that it consistently outperforms FIGARCH models with the Normal, Student-t and GED distributions. An empirical evidence of the S&P 500 hourly return is also provided with robust results. Therefore, we argue that the tempered stable distribution could be a widely useful tool for modelling the high-frequency financial volatility in general contexts with a FIGARCH-type specification.  相似文献   

15.
Bandwidth plays an important role in determining the performance of nonparametric estimators, such as the local constant estimator. In this article, we propose a Bayesian approach to bandwidth estimation for local constant estimators of time-varying coefficients in time series models. We establish a large sample theory for the proposed bandwidth estimator and Bayesian estimators of the unknown parameters involved in the error density. A Monte Carlo simulation study shows that (i) the proposed Bayesian estimators for bandwidth and parameters in the error density have satisfactory finite sample performance; and (ii) our proposed Bayesian approach achieves better performance in estimating the bandwidths than the normal reference rule and cross-validation. Moreover, we apply our proposed Bayesian bandwidth estimation method for the time-varying coefficient models that explain Okun’s law and the relationship between consumption growth and income growth in the U.S. For each model, we also provide calibrated parametric forms of the time-varying coefficients. Supplementary materials for this article are available online.  相似文献   

16.
Estimation in mixed linear models is, in general, computationally demanding, since applied problems may involve extensive data sets and large numbers of random effects. Existing computer algorithms are slow and/or require large amounts of memory. These problems are compounded in generalized linear mixed models for categorical data, since even approximate methods involve fitting of a linear mixed model within steps of an iteratively reweighted least squares algorithm. Only in models in which the random effects are hierarchically nested can the computations for fitting these models to large data sets be carried out rapidly. We describe a data augmentation approach to these computational difficulties in which we repeatedly fit an overlapping series of submodels, incorporating the missing terms in each submodel as 'offsets'. The submodels are chosen so that they have a nested random-effect structure, thus allowing maximum exploitation of the computational efficiency which is available in this case. Examples of the use of the algorithm for both metric and discrete responses are discussed, all calculations being carried out using macros within the MLwiN program.  相似文献   

17.
ABSTRACT

In this article we discuss methodology for analyzing nonstationary time series whose periodic nature changes approximately linearly with time. We make use of the M-stationary process to describe such data sets, and in particular we use the discrete Euler(p) model to obtain forecasts and estimate the spectral characteristics. We discuss the use of the M-spectrum for displaying linear time-varying periodic content in a time series realization in much the same way that the spectrum shows periodic content within a realization of a stationary series. We also introduce the instantaneous frequency and spectrum of an M-stationary process for purposes of describing how frequency changes with time. To illustrate our techniques we use one simulated data set and two bat echolocation signals that show time varying frequency behavior. Our results indicate that for data whose periodic content is changing approximately linearly in time, the Euler model serves as a very good model for spectral analysis, filtering, and forecasting. Additionally, the instantaneous spectrum is shown to provide better representation of the time-varying frequency content in the data than window-based techniques such as the Gabor and wavelet transforms. Finally, it is noted that the results of this article can be extended to processes whose frequencies change like atα, a > 0, ?∞ < α < ? ∞.  相似文献   

18.
Abstract.  A simple and standard approach for analysing multistate model data is to model all transition intensities and then compute a summary measure such as the transition probabilities based on this. This approach is relatively simple to implement but it is difficult to see what the covariate effects are on the scale of interest. In this paper, we consider an alternative approach that directly models the covariate effects on transition probabilities in multistate models. Our new approach is based on binomial modelling and inverse probability of censoring weighting techniques and is very simple to implement by standard software. We show how to do flexible regression models with possibly time-varying covariate effects.  相似文献   

19.
We consider a general class of prior distributions for nonparametric Bayesian estimation which uses finite random series with a random number of terms. A prior is constructed through distributions on the number of basis functions and the associated coefficients. We derive a general result on adaptive posterior contraction rates for all smoothness levels of the target function in the true model by constructing an appropriate ‘sieve’ and applying the general theory of posterior contraction rates. We apply this general result on several statistical problems such as density estimation, various nonparametric regressions, classification, spectral density estimation and functional regression. The prior can be viewed as an alternative to the commonly used Gaussian process prior, but properties of the posterior distribution can be analysed by relatively simpler techniques. An interesting approximation property of B‐spline basis expansion established in this paper allows a canonical choice of prior on coefficients in a random series and allows a simple computational approach without using Markov chain Monte Carlo methods. A simulation study is conducted to show that the accuracy of the Bayesian estimators based on the random series prior and the Gaussian process prior are comparable. We apply the method on Tecator data using functional regression models.  相似文献   

20.
We propose a heterogeneous time-varying panel data model with a latent group structure that allows the coefficients to vary over both individuals and time. We assume that the coefficients change smoothly over time and form different unobserved groups. When treated as smooth functions of time, the individual functional coefficients are heterogeneous across groups but homogeneous within a group. We propose a penalized-sieve-estimation-based classifier-Lasso (C-Lasso) procedure to identify the individuals’ membership and to estimate the group-specific functional coefficients in a single step. The classification exhibits the desirable property of uniform consistency. The C-Lasso estimators and their post-Lasso versions achieve the oracle property so that the group-specific functional coefficients can be estimated as well as if the individuals’ membership were known. Several extensions are discussed. Simulations demonstrate excellent finite sample performance of the approach in both classification and estimation. We apply our method to study the heterogeneous trending behavior of GDP per capita across 91 countries for the period 1960–2012 and find four latent groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号