首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Summary.  The paper is concerned with new methodology for statistical inference for final outcome infectious disease data using certain structured population stochastic epidemic models. A major obstacle to inference for such models is that the likelihood is both analytically and numerically intractable. The approach that is taken here is to impute missing information in the form of a random graph that describes the potential infectious contacts between individuals. This level of imputation overcomes various constraints of existing methodologies and yields more detailed information about the spread of disease. The methods are illustrated with both real and test data.  相似文献   

2.
A single-population Markovian stochastic epidemic model is defined so that the underlying social structure of the population is described by a Bernoulli random graph. The parameters of the model govern the rate of infection, the length of the infectious period, and the probability of social contact with another individual in the population. Markov chain Monte Carlo methods are developed to facilitate Bayesian inference for the parameters of both the epidemic model and underlying unknown social structure. The methods are applied in various examples of both illustrative and real-life data, with two different kinds of data structure considered.  相似文献   

3.
Bayesian inference for partially observed stochastic epidemics   总被引:4,自引:0,他引:4  
The analysis of infectious disease data is usually complicated by the fact that real life epidemics are only partially observed. In particular, data concerning the process of infection are seldom available. Consequently, standard statistical techniques can become too complicated to implement effectively. In this paper Markov chain Monte Carlo methods are used to make inferences about the missing data as well as the unknown parameters of interest in a Bayesian framework. The methods are applied to real life data from disease outbreaks.  相似文献   

4.
A stochastic epidemic model with several kinds of susceptible is used to analyse temporal disease outbreak data from a Bayesian perspective. Prior distributions are used to model uncertainty in the actual numbers of susceptibles initially present. The posterior distribution of the parameters of the model is explored via Markov chain Monte Carlo methods. The methods are illustrated using two datasets, and the results are compared where possible to results obtained by previous analyses.  相似文献   

5.
Summary.  Phage display is a biological process that is used to screen random peptide libraries for ligands that bind to a target of interest with high affinity. On the basis of a count data set from an innovative multistage phage display experiment, we propose a class of Bayesian mixture models to cluster peptide counts into three groups that exhibit different display patterns across stages. Among the three groups, the investigators are particularly interested in that with an ascending display pattern in the counts, which implies that the peptides are likely to bind to the target with strong affinity. We apply a Bayesian false discovery rate approach to identify the peptides with the strongest affinity within the group. A list of peptides is obtained, among which important ones with meaningful functions are further validated by biologists. To examine the performance of the Bayesian model, we conduct a simulation study and obtain desirable results.  相似文献   

6.
The Reed-Frost epidemic model is a simple stochastic process with parameter q that describes the spread of an infectious disease among a closed population. Given data on the final outcome of an epidemic, it is possible to perform Bayesian inference for q using a simple Gibbs sampler algorithm. In this paper it is illustrated that by choosing latent variables appropriately, certain monotonicity properties hold which facilitate the use of a perfect simulation algorithm. The methods are applied to real data.  相似文献   

7.
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.  相似文献   

8.
In this paper we present a review of population-based simulation for static inference problems. Such methods can be described as generating a collection of random variables {X n } n=1,…,N in parallel in order to simulate from some target density π (or potentially sequence of target densities). Population-based simulation is important as many challenging sampling problems in applied statistics cannot be dealt with successfully by conventional Markov chain Monte Carlo (MCMC) methods. We summarize population-based MCMC (Geyer, Computing Science and Statistics: The 23rd Symposium on the Interface, pp. 156–163, 1991; Liang and Wong, J. Am. Stat. Assoc. 96, 653–666, 2001) and sequential Monte Carlo samplers (SMC) (Del Moral, Doucet and Jasra, J. Roy. Stat. Soc. Ser. B 68, 411–436, 2006a), providing a comparison of the approaches. We give numerical examples from Bayesian mixture modelling (Richardson and Green, J. Roy. Stat. Soc. Ser. B 59, 731–792, 1997).  相似文献   

9.
Summary.  The paper considers high dimensional Metropolis and Langevin algorithms in their initial transient phase. In stationarity, these algorithms are well understood and it is now well known how to scale their proposal distribution variances. For the random-walk Metropolis algorithm, convergence during the transient phase is extremely regular—to the extent that the algo-rithm's sample path actually resembles a deterministic trajectory. In contrast, the Langevin algorithm with variance scaled to be optimal for stationarity performs rather erratically. We give weak convergence results which explain both of these types of behaviour and practical guidance on implementation based on our theory.  相似文献   

10.
This article presents a Bayesian approach to the regression analysis of truncated data, with a focus on zero-truncated counts from the Poisson distribution. The approach provides inference not only on the regression coefficients but also on the total sample size and the parameters of the covariate distribution. The theory is applied to some illegal immigrant data from The Netherlands. Several models are fitted with the aid of Markov chain Monte Carlo methods and assessed via posterior predictive p-values. Inferences are compared with those obtained elsewhere using other approaches.  相似文献   

11.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

12.
This paper extends stochastic conditional duration (SCD) models for financial transaction data to allow for correlation between error processes and innovations of observed duration process and latent log duration process. Suitable algorithms of Markov Chain Monte Carlo (MCMC) are developed to fit the resulting SCD models under various distributional assumptions about the innovation of the measurement equation. Unlike the estimation methods commonly used to estimate the SCD models in the literature, we work with the original specification of the model, without subjecting the observation equation to a logarithmic transformation. Results of simulation studies suggest that our proposed models and corresponding estimation methodology perform quite well. We also apply an auxiliary particle filter technique to construct one-step-ahead in-sample and out-of-sample duration forecasts of the fitted models. Applications to the IBM transaction data allow comparison of our models and methods to those existing in the literature.  相似文献   

13.
Very often, the likelihoods for circular data sets are of quite complicated forms, and the functional forms of the normalising constants, which depend upon the unknown parameters, are unknown. This latter problem generally precludes rigorous, exact inference (both classical and Bayesian) for circular data.Noting the paucity of literature on Bayesian circular data analysis, and also because realistic data analysis is naturally permitted by the Bayesian paradigm, we address the above problem taking a Bayesian perspective. In particular, we propose a methodology that combines importance sampling and Markov chain Monte Carlo (MCMC) in a very effective manner to sample from the posterior distribution of the parameters, given the circular data. With simulation study and real data analysis, we demonstrate the considerable reliability and flexibility of our proposed methodology in analysing circular data.  相似文献   

14.
In this paper, we adopt the Bayesian approach to expectile regression employing a likelihood function that is based on an asymmetric normal distribution. We demonstrate that improper uniform priors for the unknown model parameters yield a proper joint posterior. Three simulated data sets were generated to evaluate the proposed method which show that Bayesian expectile regression performs well and has different characteristics comparing with Bayesian quantile regression. We also apply this approach into two real data analysis.  相似文献   

15.
The analysis of infectious disease data presents challenges arising from the dependence in the data and the fact that only part of the transmission process is observable. These difficulties are usually overcome by making simplifying assumptions. The paper explores the use of Markov chain Monte Carlo (MCMC) methods for the analysis of infectious disease data, with the hope that they will permit analyses to be made under more realistic assumptions. Two important kinds of data sets are considered, containing temporal and non-temporal information, from outbreaks of measles and influenza. Stochastic epidemic models are used to describe the processes that generate the data. MCMC methods are then employed to perform inference in a Bayesian context for the model parameters. The MCMC methods used include standard algorithms, such as the Metropolis–Hastings algorithm and the Gibbs sampler, as well as a new method that involves likelihood approximation. It is found that standard algorithms perform well in some situations but can exhibit serious convergence difficulties in others. The inferences that we obtain are in broad agreement with estimates obtained by other methods where they are available. However, we can also provide inferences for parameters which have not been reported in previous analyses.  相似文献   

16.
This paper presents the Bayesian analysis of a semiparametric regression model that consists of parametric and nonparametric components. The nonparametric component is represented with a Fourier series where the Fourier coefficients are assumed a priori to have zero means and to decay to 0 in probability at either algebraic or geometric rates. The rate of decay controls the smoothness of the response function. The posterior analysis automatically selects the amount of smoothing that is coherent with the model and data. Posterior probabilities of the parametric and semiparametric models provide a method for testing the parametric model against a non-specific alternative. The Bayes estimator's mean integrated squared error compares favourably with the theoretically optimal estimator for kernel regression.  相似文献   

17.
Summary.  Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Markov chain Monte Carlo procedure. When the maximum likelihood estimator does not exist, an estimator can be obtained by using a penalized likelihood function or by the Markov chain Monte Carlo procedure with a suitable prior. The methodology and its implementation are illustrated by examples and simulation studies.  相似文献   

18.
Summary. A Bayesian method for segmenting weed and crop textures is described and implemented. The work forms part of a project to identify weeds and crops in images so that selective crop spraying can be carried out. An image is subdivided into blocks and each block is modelled as a single texture. The number of different textures in the image is assumed unknown. A hierarchical Bayesian procedure is used where the texture labels have a Potts model (colour Ising Markov random field) prior and the pixels within a block are distributed according to a Gaussian Markov random field, with the parameters dependent on the type of texture. We simulate from the posterior distribution by using a reversible jump Metropolis–Hastings algorithm, where the number of different texture components is allowed to vary. The methodology is applied to a simulated image and then we carry out texture segmentation on the weed and crop images that motivated the work.  相似文献   

19.
In this article, we propose to evaluate and compare Markov chain Monte Carlo (MCMC) methods to estimate the parameters in a generalized extreme value model. We employed the Bayesian approach using traditional Metropolis-Hastings methods, Hamiltonian Monte Carlo (HMC), and Riemann manifold HMC (RMHMC) methods to obtain the approximations to the posterior marginal distributions of interest. Applications to real datasets and simulation studies provide evidence that the extra analytical work involved in Hamiltonian Monte Carlo algorithms is compensated by a more efficient exploration of the parameter space.  相似文献   

20.
Shookri and Consul (1989) and Scollnik (1995) have previously considered the Bayesian analysis of an overdispersed generalized Poisson model. Scollnik (1995) also considered the Bayesian analysis of an ordinary Poisson and over-dispersed generalized Poisson mixture model. In this paper, we discuss the Bayesian analysis of these models when they are utilised in a regression context. Markov chain Monte Carlo methods are utilised, and an illustrative analysis is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号