首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigates the impact of urbanisation on birdlife in a major city. Line transects and point counts were used to survey birds in three habitat types: parkland, residential areas and business/industrial areas. Abundance, richness and diversity of assemblages were determined for all bird species and for those birds native to the area. Behaviours of birds, and of human residents in relation to birds, in these urban areas were documented, including all instances of avian aggression. Bird species, including a subset of native bird species, have greater abundance and richness in parklands. Overall species diversity is greatest in residential habitat types, but native diversity is greatest in parklands. Introduced species are most abundant in business/industrial habitat types. The most frequent aggressive encounters were initiated by noisy miners Manorina melanocephalas, one of the four most common species throughout all habitat types (other common species include the rainbow lorikeet Trichoglossus haematodus, rock dove Columba livia and common myna Sturnus tristis). Other behaviours involved birds utilising food and roost resources and were classified as being caused by active and passive human behaviours. These outcomes indicate that local changes to the environment can impact the bird species by providing different food and roost resources. Human residents and local governments have a range of tools to modify the diversity of urban areas. Further research is needed to determine alternative definitions of modification, such as defining it as open space, and investigating the health of the avian populations in urban areas.  相似文献   

2.
Studies on bird fauna of urban environments have had a long history, but the potential of studies mapping the distribution of birds in cities probably has not fully developed. The bird fauna of the municipality of Valencia (Spain) was studied to determine the influence of urbanization on bird species richness and abundance. Birds were censused during winter and the breeding season of years 1997–1998 in 197 squares measuring 49 ha each from a rural and an urbanized area. Across seasons the number of species decreased around 40% in the city compared with the rural landscape surrounding it. Such pattern could be attributed to the low number of farmland species capable to use the habitats inside the city, and the limited ability of urban parks in attracting woodland species. In the urban landscape, the influence of the dimensions and spatial arrangement of habitat patches was outweighed by the amount of each habitat per square. Bird richness and the abundance of most species were negatively related with the amount of built-up habitat per square and positively with the amount of urban parks, and of habitat diversity. Conversely, bird fauna was largely independent of mean park size per square especially during winter, indicating that at the landscape scale even small patches of habitat could play an ecological role. Conservation of urban bird diversity could benefit of two complementary strategies: (i) the protection of the surrounding rural landscape from urban development; (ii) habitat enhancement within the city. Particularly, a proper design and habitat management of urban parks could improve their suitability for urban bird fauna.  相似文献   

3.
Shih  Wan-Yu 《Urban Ecosystems》2018,21(2):379-393

Urban greenspaces harbouring many species in cities are vital planning objects for enhancing biodiversity. Seeking to optimise ecological values of urban greenspaces, this paper explores 1. Bird composition by feeding and foraging characteristics in urban greenspaces located in densely developed central districts of Taipei City; and 2. Important features of greenspaces and underlying built environments that influence bird abundance, species richness, and diversity. Results show that the majority of birds found in the study sites are omnivorous and ground foragers; whereas birds relying on water/wetland habitats for feeding and foraging are relatively small in population and species richness. This suggests water/wetland associated environments and birds might be negatively impacted by urbanisation. Secondly, bird richness and diversity increase in accordance with greenspace size, water area, and habitat heterogeneity, but little relationship is found with greenspace structure, such as greenspace shape, distance to nearest greenspaces, and proximity to source patches of mountains and rivers. Also, no significant influence is observed from development intensity, which is measured by NDBI, and building height at greenspace surroundings. According to this result, this study suggests conservation of large greenspaces as a priority strategy for enhancing urban biodiversity. The development of land should take its potential ecological value into account while assessing environmental impact. For enhancing habitat quality of existing urban greenspaces, creating water bodies and increasing habitat types can be effective methods. Yet current planning strategies to increase street greenery and to connect urban greenspaces with surrounding mountains and rivers might only benefit specific urban exploiters or adaptors and result in little overall effect on richness and diversity.

  相似文献   

4.

An analysis of the birds in Bangkok’s urban parks and landscapes provided guidance in designing healthy urban ecosystems. This research studied the relationships between bird diversity, park size, distance to the nearest main park, and habitat compositions in 10 urban parks in the Bangkok metropolitan area between January and August in 2013. Thirty sampling points per park were used to observe the number and species of birds in each urban park. A total of 50 bird species were found. Phutthamonthon, the largest urban park (400 ha), contained the greatest number of species (39 species), followed by Suan Luang Rama IX (80 ha and 34 species) and Wachirabenchatat (60 ha and 29 species). Moreover, the diversity index (H′) was highest in Phuttamonthon (1.17), followed by Thawiwanarom (1.08), and Wachirabenchatat (1.04). Larger urban parks and parks closer to the largest urban park had higher species richness than smaller parks and parks further from the largest urban park. The large parks contain higher habitat compositions than small parks. These findings can be applied to future urban ecosystem planning to combine the importance of park size (island size, and its proximity to a large park) and its arrangement, including features such as wetland, forest, buildings and grassland; and provide basic advice for future urban park design, as well as re-design of current urban parks.

  相似文献   

5.
Urban riparian habitats are potentially important resources for native birds in arid ecosystems. Most studies have assessed the value of urban riparian habitat in terms of vegetation and natural resources; however, the surrounding land use and infrastructure may determine the viability of urban habitat. We studied the impact of urban structure, the combination of land use, infrastructure and vegetation variables that work together to shape the urban environment, on avian riparian habitat in the Truckee Meadows, Nevada, USA. Land use and infrastructure explained avian species richness and abundance better than local vegetation alone, but community resemblance was more strongly correlated to vegetation. Avian species guilds responded differentially to surrounding land use, suggesting there may be a functional difference between land use types. The best models for bird diversity used urban structure (both land use and vegetation) to describe potential habitat. Urban structure describes urban habitat in ways that vegetation variables alone cannot. Studies that ignore land use and infrastructure and other socioeconomic variables are likely missing key functional differences within urban ecosystems, and may miss the potential for compatible development that encourages both biodiversity and urban growth.  相似文献   

6.
Urban green spaces provide habitat for numerous plant and animal species. However, currently we have little knowledge on which determinants drive the species richness within and across taxonomic groups. In this paper we investigate the determinants of total, native, and endangered species richness for vascular plants, birds, and mammals within and across taxonomic groups. We examined a stratified random sample of 32 urban green spaces in Hannover, Germany. Species inventories for plants and birds were generated on the basis of line transect surveys. Mammals were surveyed by means of point counts using camera traps. Using a principal component analysis and multiple regression models, we tested 10 explanatory variables for species-area effects, distance effects, and the effects of habitat structure of green spaces on species richness. When analyzing single explanatory variables, we determined that the species richness of all groups was significantly positively correlated to patch area, number of habitat types, and a short distance to the nearest green space. Testing combined effects of variables showed that patch area in combination with habitat heterogeneity was most important for plants (total, native, and endangered), birds (total and native), and overall species richness. This emphasizes the importance of the species-area effect and the effects of habitat structure on species richness in urban green spaces. We conclude that, in the context of urban planning, it is important to conserve large green spaces that include a high diversity of habitats to maintain high species richness.  相似文献   

7.
Increased urbanization typically leads to an increase in abundance of a few species and a reduction in bird species richness. Understanding the structure of biotic communities in urban areas will allow us to propose management techniques and to decrease conflicts between wild species and human beings. The objective of this study was to describe the structure of the bird community in an urban ecosystem. The study was carried out in the city of Taubaté in southeastern Brazil. Point-counts were established in areas with different levels of tree density ranging from urban green spaces to predominantly built-up areas. We looked for a correlation between the richness/abundance of birds and the size of the area surveyed, the number of houses, the number of tree species and the number of individual trees. The results of multiple regression showed that bird richness had a direct relationship with vegetation complexity. The abundance and diversity of tree species were better predictors of bird species than the number of houses and size of the area surveyed. We discuss implications of this study for conservation and management of bird diversity in urban areas, such as the need to increase green areas containing a large diversity of native plant species.  相似文献   

8.
We examined the distribution of birds and butterflies at two types of urban riparian areas in the metropolitan area of Denver, Colorado, USA. The sites consisted of relatively natural areas containing native woody vegetation, and those that had been highly modified with trees and shrubs removed and planted with lawn grass. Species richness of both butterflies and birds differed significantly between the two types of sites. Species richness, however, was not significantly correlated between birds and butterflies. Bird abundance was similar between site types but consisted of two assemblages. Brewer's blackbirds, common grackles, bank swallows, and mourning doves were abundant at wooded sites while American robins, European starlings, house sparrows, house finches, and mallards were more abundant at lawned riparian sites. Butterfly abundance was less at lawned sites. This contrast in bird and butterfly response to habitats suggests they respond to different habitats in distinct ways. Both taxon groups, however, were important discriminators between habitat types. Overall, butterfly and bird species richness was 44% less at highly modified riparian sites.  相似文献   

9.
Occurrences of breeding bird species in 54 urban parks were investigated in the city of Oulu in northern Finland. Park area, human activity, habitat, and landscape structure within a 9-ha square surrounding the study park were related to the bird species richness and occurrence of individual bird species. A total of 22 species was observed. The area of the park explained 39% of the variance of species richness. Seven species (wheatear [Oenanthe oenanthe], common rosefinch [Carpodacus erythrinus], garden warbler [Sylvia borin], lesser whitethroat [Sylvia curruca], linnet [Acanthis cannabina], redpoll [Carduelis flammea], and yellowhammer [Emberiza citrinella]) were not detected in parks of >0.75 ha. Species with lower area demands occurred closer to the town center than species with greater area requirements. Ground-nesting species were poor colonizers of urban parks, whereas high numbers of nest boxes in urban parks attracted many cavity-nesting species. The willow warbler (Phylloscopus trochilus) and the magpie (Pica pica) bred more often in unmanaged than in managed parks, probably because of the greater vegetation cover in unmanaged parks. Park structure variables were entered into models for 7 of the 12 most common bird species, whereas broad scale variables were entered into models for 6 of the 12 species. The number of adjacent buildings had a negative affect on three bird species (the willow warbler, hooded crow [Corvus corone cornix], and spotted flycatcher [Muscicapa striata]). The occurrence of breeding species in urban parks depends on the size of the park, park structure, and landscape structure outside the park.  相似文献   

10.

There have been few studies investigating the relationship between the built environment and the status of bird distributions in small island tropical urban areas. We present a study investigating the relationship between bird species richness, abundance and assemblage to the built environment in Suva, Fiji. Field surveys were taken at 54 randomly selected sites throughout the city, stratified by three building density classes and the central business district (CBD). At each site bird counts were recorded, along with environmental data such as average building height, within a 150 m radius. Land-use information was obtained from screen digitized high-resolution satellite imagery within the same radius. Distance to undeveloped patches of land within the urban area was calculated using a GIS. Analysis of the effects of the built environment was carried out for all species, and for exotic and native species separately. Abundance of exotics was significantly higher in the central business district (CBD) than all other urban density classes, and significantly higher than natives in all other density classes. We found a negative relationship between native species richness and distance to undeveloped patches, but no relationship for exotics. Species assemblage was not related to urban density class. We conclude that the status of native and exotic bird species in Suva is similar to what has been found in urban areas in temperate climates, and conservation efforts should focus on minimizing the amount of heavily urbanized “core areas” and protecting undeveloped areas of forested vegetation to improve bird biodiversity in small tropical islands cities.

  相似文献   

11.

Biological invasions are the second most important cause of species extinction. Aided by processes such as transportation and urbanization, exotic species can establish and spread to new locations, causing changes in the function and structure of ecosystems. The House Sparrow is a widespread and highly abundant landbird associated to human presence. Previous studies performed in urban landscapes have suggested that this species could be acting, in synergy with urbanization, as a potential threat to native urban avian assemblages. In this study we assessed the relationship between House Sparrow density and native bird species richness in a region where the sparrows are scarce and sparsely distributed. We surveyed bird assemblages in and around four small-sized human settlements, considering three conditions in relation to House Sparrow presence: urban invaded, urban non-invaded, and non-urban non-invaded. To assess the potential detrimental role of House Sparrows on native bird species richness, we measured, additionally to sparrow densities, 20 predictor variables that describe vegetation structure and complexity, as well as urban infrastructure and human activities across four seasons of 1 year. Our results show that maximum shrub height was positively related to bird species richness, built cover was negatively associated with it, and House Sparrow invaded sites were related to a significant decrease of bird species richness, with increasing richness loss when more sparrows were present. Thus, we here provide evidence that urban areas can act in synergy with the presence of House Sparrows (even in low densities) in the urban-related species richness decline pattern.

  相似文献   

12.
The environmental factors affecting the spatial dynamics of bird communities in urban parks are well understood, but much less attention has been paid to the seasonal dynamics of bird communities. Since migrant and resident human commensal birds might have contrasting responses to environmental factors of urban parks, we expected different seasonal dynamics among parks. On the other hand, because bird species can have different habitat relationships throughout the year, we also expected different responses of bird richness to environmental variables between breeding and non-breeding seasons. Bird surveys were conducted in 14 small urban parks (1–4 Ha) of Mar del Plata city (Argentina) for one full annual cycle. Bird richness changed between seasons, but bird abundance remained constant. Bird community composition did not vary between seasons, but urban parks near the urban center, with the highest pedestrian traffic and isolation to other green areas had the least seasonal change of composition. During the breeding season, bird richness was negatively affected by the percentage cover of high buildings surrounding the immediate limits of parks, whereas during the non-breeding season bird richness was not related with any environmental variable. Bird composition variation among parks was affected by the distance to the urban center during both seasons. Results showed that urbanization promotes a seasonal homogenization of bird communities in urban parks, probably by affecting the presence of migrant species and promoting the temporal stability of human commensal species.  相似文献   

13.
At present, urban areas cover almost 3% of the Earth’s terrestrial area, and this proportion is constantly increasing. Although urbanization leads to a decline in biodiversity, at the same time it creates extensive habitats that are exploited by an assemblage of organisms, including birds. The species composition and density of birds nesting in towns and cities are determined by the types of buildings, the structure and maturity of urban greenery, and habitat diversity. In contrast, the habitat traits shaping the community of birds wintering in urban areas are not known. The aim of this work was to assess the influence of habitat structure, food resources and the urban effects (pollution, noise, artificial light) on an assemblage of birds overwintering in an urban area. It was carried out in 2014 and 2015 in the city of Kraków (southern Poland), on 56 randomly chosen sample plots, in which the composition, density and interseasonal similarity of bird assemblage were assessed with line transect method. A total of 64 bird species (mean = 17.7 ± 4.9 SD species/plot) was recorded. The mean density was 89.6 ind./km ±63.3 SD. The most numerous species were Great Tit Parus major, Magpie Pica pica, Blackbird Turdus merula, Blue Tit Cyanistes caeruleus, Rook Corvus frugilegus, Fieldfare Turdus pilaris and House Sparrow Passer domesticus. Noise adversely affected species numbers and density, but artificial light acted positively on the density of birds and their interseasonal stability. The species richness and density of birds were also determined by the number of food sources available (e.g. bird-feeders). In addition, the greater the proportion of open areas, the fewer species were recorded. In contrast, the more urban greenery there was, the greater the density of the entire bird assemblage. Urban infrastructure (buildings, roads, refuse tips) had a positive effect on the interseasonal stabilization of the species composition of wintering birds. The results of this work indicate that the urban effect, i.e. noise and light pollution, apart from purely habitat factors, provide a good explanation for the species richness, density and stability of bird assemblage wintering in urban areas.  相似文献   

14.
Recent concern over increasing loss of biodiversity has prompted considerable interest in the role of urban green spaces as reservoirs of local biodiversity. This study assessed the diversity of three indicator taxa - plants, ants and birds - on golf courses spanning a wide range of environmental variation in terms of climate, elevation, course age, size and connectivity to native woodland. Species richness and community composition was further compared between contrasting on-course habitat types that reflect different management intensities. We identified a set of taxon-specific environmental correlates indicating an intricate interplay of landscape- and local-scale variables that affect local species diversity. Our results show that floristic diversity is positively associated with the amount of rainfall, whereas ant and bird diversity are related to local-scale factors, particularly the number of trees and the size of water features on a site. The amount of on-course native habitat was a strong predictor of plant and ant diversity and was also associated with the number of unique species at the site level; this reinforces the value of remnant habitat patches as local biodiversity reservoirs that represent mini hot-spots in an otherwise species-poor urban landscape. Community composition for all three taxa differed markedly between non-playing and playing areas, with boundary and remnant habitats generally having more diverse, species-rich communities. Our results suggest that local floral and faunal biodiversity on urban golf courses can be enhanced by creating woody non-playing areas and, especially, by preserving, restoring or expanding remnant habitats.  相似文献   

15.

High population growth in the tropics is driving urbanisation, removing diverse natural ecosystems. This is causing native species to suffer while introduced synanthropes flourish. City planners are developing urban greenspace networks, in part trying to address this issue. Architects contribute to these greenspace networks by designing elevated and ground level green spaces on large-scale buildings. However, little evidence is available on whether building green spaces support native fauna. This is true for birds in tropical Singapore that support important ecosystem services and have existence value. Therefore, in this study, we conducted bird surveys and statistical analyses to determine, if and how vegetation on three building green space types (ground gardens, roof gardens and green walls) have a positive impact on native or introduced bird species. We found that elevated greenery (roof gardens and green walls) on large-scale buildings supported a higher richness of birds and abundance of urban native birds than control roofs and walls without vegetation. Ground gardens supported similar levels of native species as roof gardens but also a larger proportion of generalist synanthropes. However, we found no tropical forest habitat specialists across any space type. Therefore, we recommend roof gardens and ground gardens as a potential space for urban natives outside of a less competitive ground-level urban environment. Our study also found certain building design elements (height of elevated space, presence of specific plants) supported different species groups. Therefore, we suggest that these ecological requirements for different species groups are considered when designing a building’s green space.

  相似文献   

16.
Wading birds (i.e, Ardeidae: herons, egrets, and bitterns) are a guild of waterbirds that forage in coastal habitats which in the US and Europe are often located in close proximity to urban centers. However, the use of urban marine habitats may have consequences for bird populations, as birds can be subject to stress from increased levels of passive and active human disturbance. We examined the effects of human disturbance, available foraging habitat, and prey abundance on wading bird density and species richness at 17 urban coastal sites in Narragansett Bay, Rhode Island USA. The sites represented a gradient of immediately adjacent residential and commercial land use (e.g., 0.0–67.7% urban land use within a 30.5 m buffer of the sites) within an urban matrix (i.e., all sites were located within a suburban center with a population of about 85,000 people). Wading bird density (0.62 ± 0.12 birds ha−1) and species richness (average 4.49 ± 0.37 species across all sites) were not influenced by passive human disturbance as measured by the extent of urban land surrounding a site. However, wading bird density and species richness both decreased significantly as active disturbance (i.e., number of boats moored or docked upstream of the site) increased (r = −0.56, F = 6.85, p = 0.019 and r = −0.73, F = 16.6, p = 0.001, respectively). In addition, both density (r = 0.72, F = 16.2, p = 0.001) and species richness (r = 0.72, F = 16.2, p = 0.001) increased concomitantly with a prey index that combines the density of fish and invertebrates on which the birds feed with the amount of available shallow water foraging habitat at a site. Our results suggest that wading birds i) may not be negatively affected by urban land surrounding estuarine foraging areas in and of itself; and ii) may be utilizing urban areas in the absence of high levels of active disturbance to take advantage of potentially enhanced prey resources. In the case where the benefits of foraging at a site outweigh the costs related to human disturbance, urban marine habitats may need to be considered for restoration or protection from further increases in active human disturbance.  相似文献   

17.
Urbanization reduces the quantity of native vegetation and alters its local structure and regional spatial pattern. These changes cause local extirpations of bird species associated with native vegetation and increases in the abundance and number of bird species associated with human activity. We used 54–1 km2 landscapes in the Seattle, Washington, USA metropolitan area to determine (1) the relative importance of habitat quantity, structure, and pattern to bird diversity and abundance and (2) whether housing developments can be managed to mitigate the negative impacts of urbanization on forest bird diversity. In general, bird species richness was high and many native forest species were retained where urban landcover comprised less than 52% of the landscape, tree density (especially that of evergreens) remained at least 9.8 trees/ha in developments, and forest was at least 64% aggregated across the landscape. These results suggest that the quantity, structure, and pattern of forested habitat affected breeding bird diversity in urbanizing landscapes. However, habitat pattern appeared less influential than other habitat attributes when results from all community- and population-level analyses were considered. Conservation of native birds in reserves can be supplemented by managing the amount, composition, structural complexity, and—to a lesser extent—arrangement of vegetation in neighborhoods.  相似文献   

18.
19.

The Neotropical region has been subjected to massive urbanization, which poses high risks for some global biodiversity hotspots and losses of ecosystem functions and services. In this study, we investigate how distance from large patches of native forests (source areas) and vegetation (green)/and infrastructure (gray) characteristics affect bird species richness and functional diversity in São Paulo megacity, southeastern Brazil. We analyzed the effects of source areas and green/gray characteristics on species richness and functional diversity (richness, evenness, and divergence) indices. We detected 231 bird species, and our data confirmed our predictions: (1) bird species richness in urbanized habitats was found to be (~?50–85%) lower than in source habitats; (2) species richness and trait composition significantly decreased as the distance from the source area increased, while functional richness was not affected by this metric; and (3) shrub and herbaceous covers and maximum height of trees were positively correlated with species richness and unique functional traits regarding habitat, diet, foraging and nesting strata and dispersal ability of birds in the forest-urban matrix. The number of buildings was negatively correlated with bird species richness and functional richness. Maximum height of buildings caused dramatic declines in functional evenness. Functional divergence was notably lower in sites with high shrub cover. Our study stresses the complexity of vegetation embedded in large Neotropical urban settlements and the need to maintain large protected areas surrounding megacities to mitigate the impacts of urbanization on birds.

  相似文献   

20.
Wooded habitats represent hotspots of urban biodiversity, however, urban development imposes pressure on biota in these refuges. Identification of the most influential habitat attributes and the role of local urban characteristics is crucial for proper decisions on management practices supporting biodiversity. We aimed to identify well manageable fine-scale habitat attributes to suggest specific, feasible and affordable management recommendations for green space in cities. We analysed species richness of woodland-associated bird communities and incidence of individual species at 290 sites in a wide variety of green areas scattered across the city of Prague, Czech Republic. Generalized linear mixed models (GLMM) and regression tree analyses were used to identify site-scale (100 m radius sampling sites) and local-scale (200 m and 500 m radius plots) habitat attributes shaping the bird communities at individual sites. Logistic regression was used to assess the responses of individual species to habitat characteristics. Our results imply that at the site scale, management practices should focus on maintenance and promoting species-diverse and older tree stands, with a mixture of coniferous and deciduous trees. Water-bodies and accompanying riparian habitats should be maintained and carefully managed to preserve high-quality remnants of natural vegetation. Presence of a few old trees (about 12 % of tree cover with DBH?>?50 cm) or small urban standing water and watercourses enrich the bird community by at least two species. Species richness of woodland avifauna at particular sites is further supported by the total amount of tree cover in the surroundings, including scattered greenery of public spaces and private gardens. We conclude that proper management at site scale has the potential to increase biodiversity of the urban environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号