首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The celebrated Black–Scholes model made the assumption of constant volatility but empirical studies on implied volatility and asset dynamics motivated the use of stochastic volatilities. Christoffersen in 2009 showed that multi-factor stochastic volatilities models capture the asset dynamics more realistically. Fouque in 2012 used it to price European options. In 2013, Chiarella and Ziveyi considered Christoffersen’s ideas and introduced an asset dynamics where the two volatilities of the Heston type act separately and independently on the asset price, and using Fourier transform for the asset price process and double Laplace transform for the two volatilities processes, solved a pricing problem for American options. This paper considers the Chiarella and Ziveyi model and parameterizes it so that the volatilities revert to the long-run-mean with reversion rates that mimic fast (for example daily) and slow (for example seasonal) random effects. Applying asymptotic expansion method presented by Fouque in 2012, we make an extensive and detailed derivation of the approximation prices for European options. We also present numerical studies on the behavior and accuracy of our first- and second-order asymptotic expansion formulas.  相似文献   

2.
Risks are usually represented and measured by volatility–covolatility matrices. Wishart processes are models for a dynamic analysis of multivariate risk and describe the evolution of stochastic volatility–covolatility matrices, constrained to be symmetric positive definite. The autoregressive Wishart process (WAR) is the multivariate extension of the Cox, Ingersoll, Ross (CIR) process introduced for scalar stochastic volatility. As a CIR process it allows for closed-form solutions for a number of financial problems, such as term structure of T-bonds and corporate bonds, derivative pricing in a multivariate stochastic volatility model, and the structural model for credit risk. Moreover, the Wishart dynamics are very flexible and are serious competitors for less structural multivariate ARCH models.  相似文献   

3.
There has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process, and derive the conditional Laplace transform of the FIWSV model in order to obtain a closed form expression of moments. A two-step procedure is used, namely estimating the parameter of fractional integration via the local Whittle estimator in the first step, and estimating the remaining parameters via the generalized method of moments in the second step. Monte Carlo results for the procedure show a reasonable performance in finite samples. The empirical results for the S&P 500 and FTSE 100 indexes show that the data favor the new FIWSV process rather than the one-factor and two-factor models of the Wishart autoregressive process for the covariance structure.  相似文献   

4.
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a Markov Chain Monte Carlo (MCMC) sampling algorithm. Candidate draws for the unobserved volatilities are obtained in blocks by applying the Kalman filter and simulation smoother to a linearization of a nonlinear state space representation of the model. Crucially, information from both the spot and option prices affects the draws via the specification of a bivariate measurement equation, with implied Black–Scholes volatilities used to proxy observed option prices in the candidate model. Alternative models nested within the Heston (1993) framework are ranked via posterior odds ratios, as well as via fit, predictive and hedging performance. The method is illustrated using Australian News Corporation spot and option price data.  相似文献   

5.
This article describes a maximum likelihood method for estimating the parameters of the standard square-root stochastic volatility model and a variant of the model that includes jumps in equity prices. The model is fitted to data on the S&P 500 Index and the prices of vanilla options written on the index, for the period 1990 to 2011. The method is able to estimate both the parameters of the physical measure (associated with the index) and the parameters of the risk-neutral measure (associated with the options), including the volatility and jump risk premia. The estimation is implemented using a particle filter whose efficacy is demonstrated under simulation. The computational load of this estimation method, which previously has been prohibitive, is managed by the effective use of parallel computing using graphics processing units (GPUs). The empirical results indicate that the parameters of the models are reliably estimated and consistent with values reported in previous work. In particular, both the volatility risk premium and the jump risk premium are found to be significant.  相似文献   

6.
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a Markov Chain Monte Carlo (MCMC) sampling algorithm. Candidate draws for the unobserved volatilities are obtained in blocks by applying the Kalman filter and simulation smoother to a linearization of a nonlinear state space representation of the model. Crucially, information from both the spot and option prices affects the draws via the specification of a bivariate measurement equation, with implied Black-Scholes volatilities used to proxy observed option prices in the candidate model. Alternative models nested within the Heston (1993) framework are ranked via posterior odds ratios, as well as via fit, predictive and hedging performance. The method is illustrated using Australian News Corporation spot and option price data.  相似文献   

7.
This paper provides a semiparametric framework for modeling multivariate conditional heteroskedasticity. We put forward latent stochastic volatility (SV) factors as capturing the commonality in the joint conditional variance matrix of asset returns. This approach is in line with common features as studied by Engle and Kozicki (1993), and it allows us to focus on identication of factors and factor loadings through first- and second-order conditional moments only. We assume that the time-varying part of risk premiums is based on constant prices of factor risks, and we consider a factor SV in mean model. Additional specification of both expectations and volatility of future volatility of factors provides conditional moment restrictions, through which the parameters of the model are all identied. These conditional moment restrictions pave the way for instrumental variables estimation and GMM inference.  相似文献   

8.
An alternative distributional assumption is proposed for the stochastic volatility model. This results in extremely flexible tail behaviour of the sampling distribution for the observables, as well as in the availability of a simple Markov Chain Monte Carlo strategy for posterior analysis. By allowing the tail behaviour to be determined by a separate parameter, we reserve the parameters of the volatility process to dictate the degree of volatility clustering. Treatment of a mean function is formally integrated in the analysis.

Some empirical examples on both stock prices and exchange rates clearly indicate the presence of fat tails, in combination with high levels of volatility clustering. In addition, predictive distributions indicate a good fit with these typical financial data sets.  相似文献   

9.
An alternative distributional assumption is proposed for the stochastic volatility model. This results in extremely flexible tail behaviour of the sampling distribution for the observables, as well as in the availability of a simple Markov Chain Monte Carlo strategy for posterior analysis. By allowing the tail behaviour to be determined by a separate parameter, we reserve the parameters of the volatility process to dictate the degree of volatility clustering. Treatment of a mean function is formally integrated in the analysis.

Some empirical examples on both stock prices and exchange rates clearly indicate the presence of fat tails, in combination with high levels of volatility clustering. In addition, predictive distributions indicate a good fit with these typical financial data sets.  相似文献   

10.
We propose a simulation-based Bayesian approach to analyze multivariate time series with possible common long-range dependent factors. A state-space approach is used to represent the likelihood function in a tractable manner. The approach taken here allows for extension to fit a non-Gaussian multivariate stochastic volatility (MVSV) model with common long-range dependent components. The method is illustrated for a set of stock returns for companies having similar annual sales.  相似文献   

11.
We consider estimation of the historical volatility of stock prices. It is assumed that the stock prices are represented as time series formed as samples of the solution of a stochastic differential equation with random and time-varying parameters; these parameters are not observable directly and have unknown evolution law. The price samples are available with limited frequency only. In this setting, the estimation has to be based on short time series, and the estimation error can be significant. We suggest some supplements to the existing nonparametric methods of volatility estimation. Two modifications of the standard summation formula for the volatility are derived. In addition, a linear transformation eliminating the appreciation rate and preserving the volatility is suggested.  相似文献   

12.
This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount the variances element by element and therefore allowing a flexible and pragmatic variance modelling approach. Diagnostic tests and sequential model monitoring are discussed in some detail. The proposed estimation theory is applied to a four-dimensional time series, comprising spot prices of aluminium, copper, lead and zinc of the London metal exchange. The empirical findings suggest that the proposed Bayesian procedure can be effectively applied to financial data, overcoming many of the disadvantages of existing volatility models.  相似文献   

13.
Multivariate stochastic volatility models with skew distributions are proposed. Exploiting Cholesky stochastic volatility modeling, univariate stochastic volatility processes with leverage effect and generalized hyperbolic skew t-distributions are embedded to multivariate analysis with time-varying correlations. Bayesian modeling allows this approach to provide parsimonious skew structure and to easily scale up for high-dimensional problem. Analyses of daily stock returns are illustrated. Empirical results show that the time-varying correlations and the sparse skew structure contribute to improved prediction performance and Value-at-Risk forecasts.  相似文献   

14.
股票价格的频繁波动是股票市场最明显的特征之一。ARCH类模型可以很好地预测金融资产收益率的方差。通过对上证指数的统计分析表明,上证指数的收益率分布表现出非正态性,并存在自回归条件异方差的特征。利用ARCH类模型对上证指数的波动进行了拟合,结果表明GARCH(1,1)模型对上证指数波动具有较好的拟合效果。  相似文献   

15.
Volatility estimation in financial markets has always been a challenge especially in time of crisis. Once asset prices and investment decisions are highly sensitive to such variable, many different models have been proposed in literature. This article estimates the volatility from a new family of stochastic volatility models called non-Gaussian State Space Models, a subclass of state space models where it is possible to compute exact likelihood. Volatilities of important Asian and Oceanian stock market indexes have been estimated and compared to APARCH model estimates. Results showed that non-Gaussian State Space Models outperformed significantly in both in-sample and forecasting cases.  相似文献   

16.
为了探测随机波动模型的非对称特征,修改传统的随机波动模型建立非对称的随机波动模型,采用基于马尔可夫链蒙特卡洛(MCMC)模拟的贝叶斯分析对模型进行参数估计。对中国深圳、上海股市波动进行实证研究发现,非对称随机波动模型能较好地探测波动存在的非对称波动。与GJR-GARCH模型相比,非对称随机波动模型预测效果更好。  相似文献   

17.
This article provides an efficient method for pricing forward starting options under stochastic volatility model with double exponential jumps. The forward characteristic function of the log asset price is derived and thereby forward starting options are well evaluated by Fourier-cosine technique. Based on adaptive simulated annealing algorithm, the model is calibrated to obtain the estimated parameters. Numerical results show that the pricing method is accurate and fast. Double exponential jumps have pronounced impacts on long-term forward starting options prices. Stochastic volatility model with double exponential jumps fits forward implied volatility smile pretty well in contrast to stochastic volatility model.  相似文献   

18.
This article tests a stochastic volatility model of exchange rates that links both the level of volatility and its instantaneous covariance with returns to pathwise properties of the currency. In particular, the model implies that the return–volatility covariance behaves like a weighted average of recent returns and hence switches signs according to the direction of trends in the data. This implies that the skewness of the finite-horizon return distribution likewise switches sign, leading to time-varying implied volatility “smiles” in options prices. The model is fit and assessed using Bayesian techniques. Some previously reported volatility results are accounted for by the fitted models. The predicted pattern of skewness dynamics accords well with that found in historical options prices.  相似文献   

19.
This article deals with the estimation of continuous-time stochastic volatility models of option pricing. We argue that option prices are much more informative about the parameters than are asset prices. This is confirmed in a Monte Carlo experiment that compares two very simple strategies based on the different information sets. Both approaches are based on indirect inference and avoid any discretization bias by simulating the continuous-time model. We assume an Ornstein-Uhlenbeck process for the log of the volatility, a zero-volatility risk premium, and no leverage effect. We do not pursue asymptotic efficiency or specification issues; rather, we stick to a framework with no overidentifying restrictions and show that, given our option-pricing model, estimation based on option prices is much more precise in samples of typical size, without increasing the computational burden.  相似文献   

20.
Risks are usually represented and measured by volatility-covolatility matrices. Wishart processes are models for a dynamic analysis of multivariate risk and describe the evolution of stochastic volatility-covolatility matrices, constrained to be symmetric positive definite. The autoregressive Wishart process (WAR) is the multivariate extension of the Cox, Ingersoll, Ross (CIR) process introduced for scalar stochastic volatility. As a CIR process it allows for closed-form solutions for a number of financial problems, such as term structure of T-bonds and corporate bonds, derivative pricing in a multivariate stochastic volatility model, and the structural model for credit risk. Moreover, the Wishart dynamics are very flexible and are serious competitors for less structural multivariate ARCH models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号