首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Rainfall interception by Santa Monica's municipal urban forest   总被引:4,自引:2,他引:2  
Effects of urban forests on rainfall interception and runoff reduction have been conceptualized, but not well quantified. In this study rainfall interception by street and park trees in Santa Monica, California is simulated. A mass and energy balance rainfall interception model is used to simulate rainfall interception processes (e.g., gross precipitation, free throughfall, canopy drip, stemflow, and evaporation). Annual rainfall interception by the 29,299 street and park trees was 193,168 m3 (6.6 m3/tree), or 1.6% of total precipitation. The annual value of avoided stormwater treatment and flood control costs associated with reduced runoff was $110,890 ($3.60/tree). Interception rate varied with tree species and sizes. Rainfall interception ranged from 15.3% (0.8 m3/tree) for a small Jacaranda mimosifolia (3.5 cm diameter at breast height) to 66.5% (20.8 m3/tree) for a mature Tristania conferta (38.1 cm). In a 25-year storm, interception by all street and park trees was 12,139.5 m3 (0.4%), each tree yielding $0.60 (0.4 m3/tree) in avoided flood control costs. Rainfall interception varied seasonally, averaging 14.8% during a 21.7 mm winter storm and 79.5% during a 20.3 mm summer storm for a large, deciduous Platanus acerifolia tree. Effects of differences in temporal precipitation patterns, tree population traits, and pruning practices on interception in Santa Monica, Modesto, and Sacramento, California are described.  相似文献   

2.
Urban forests provide important ecosystem services. In terms of hydrological benefits, forest ecosystems in urban environments represent qualitative and quantitative filter for rainwater. We quantified the canopy interception in relation to urban forest stand structure and rainfall intensity in an urban transect of the mixed (upland) forest in the city centre, towards a riparian pine forest and a floodplain hardwood forest in the City of Ljubljana, Slovenia. Bulk precipitation in open areas and throughfall were measured with fixed rainfall collectors in each forest. Stemflow was estimated from a review of relevant literature. We found that canopy interception in selected urban forests was mainly affected by tree species composition and other stand structure variables, such as canopy cover and tree dimensions. Average annual canopy interception was highest in the mixed forest (18.0% of bulk precipitation), while the riparian pine forest had the lowest level (3.9% of bulk precipitation) and the floodplain hardwood forest had the intermediate level for interception (7.1% of bulk precipitation). The mixed forest exhibited the stand structure factors that contributed to the highest canopy interception among the studied forests: high assemblage of dominant coniferous trees, denser canopy cover and the highest growing stock. Furthermore, rainfall intensity has proven to be an important factor for the seasonal partitioning (comparing the leafed and leafless period) of canopy interception. A better understanding of precipitation interception processes in urban forests is needed to assist urban forest managing and planning, aiming at maximizing canopy interception for the mitigation of stormwater runoff and flooding in urbanized watershed.  相似文献   

3.

Throughfall and stemflow serve as two important transport mechanisms for water and solutes in urban forests, though these fluxes are seldom quantified within cities. This study is the first to utilize two flux-based enrichment ratios for stemflow to characterize spatial patterns in water and solute distribution in urban forest fragments. Using event-based, in situ sampling, this study quantified stemflow enrichment for Quercus rubra (northern red oak) and Quercus alba (white oak) trees relative to open precipitation (EP,B) and throughfall (ET,B) per unit trunk basal area for dissolved Ca, K, Mg, Mn, NO3-N, and S. The study investigated variability in nutrient enrichment at the fragment, municipal, and regional scales. Among all solutes, observations for EP,B and ET,B for Q. rubra and Q. alba were generally lowest for Mg and highest for Mn and K. Significant intra-urban variability in stemflow enrichment was limited to EP,B of K and ET,B of Ca (p?<?0.05), while trans-regional variability in stemflow enrichment consistently indicated higher EP,B and ET,B in more highly developed portions of the study region. At the fragment scale, EP,B and ET,B for Q. rubra was consistently higher than for Q. alba, with variability in these observations significant for all solutes. For example, interspecific variability in EP,B was greatest for K, where median values ranged from 2.8?±?29.7 in Q. alba to 87.1?±?97.1 in Q. rubra. While observations for ET,B were generally lower than those for EP,B, observations for Q. rubra also consistently exceeded those for Q. alba, with median values for K ranging from 1.5?±?0.5 to 21.9?±?3.1 for Q. alba and Q. rubra, respectively. Findings were likely driven by variability in biophysical characteristics between the two species (e.g., bark morphology). Further, findings indicate that species heterogeneity within the urban forest contributes to significant variability in nutrient (and possibly pollutant) transport and fate via throughfall and stemflow below the canopy, with subsequent impacts on urban forest biogeochemistry.

  相似文献   

4.
Afforestation is inserted in the urban environment and interferes directly in the surface runoff. In order to quantify the rainfall interception by tree species, an experiment was carried out in the city of Uruaçu, Goiás, Brazil, with the four most common tree species in the urban afforestation of the region. The species chosen were the Mangifera indica (mango tree), the Caesalpinia peltophoroides (sibipiruna tree), the Pachira aquatica (munguba tree) and the Licania tomentosa (oiti). In order to register precipitation, ten pluviographs were used. They are capable of measuring precipitation over time in terms of duration, volume, and intensity. For events with a mean cumulative precipitation of 16.7 mm, the mean values of interception found in each species were: Mangifera indica - 8.0 mm; Pachira aquatica - 7.4 mm; Licania tomentosa - 7.2 mm; and Caesalpinia peltophoroides - 4.8 mm. The research confirms the importance of studies related to the identification of the species’ individual characteristics that interfere in the rainfall interception capacity and that can consequently contribute to urban drainage actions. In addition, it proves the existence of variations of rainfall interception in relation to rainfall events and during their occurrences and emphasizes the need for a careful definition of the species that will compose the urban afforestation.  相似文献   

5.
Urban stresses are known to affect street trees growing in spatially restricted conditions, but even in relatively large parks the cumulative effects by construction, pedestrian uses, and impacts from temporary events may have deleterious long-term effects on plant health. In Columbus, Ohio, the 93 ac (42.3 ha) Franklin Park has been subjected to major construction events and site re-configuration about once per generation—at least six times in 150 years. The first recorded shade- and ornamental tree installations occurred between 1895 and 1910. Those trees, as well as those native to the park, were mapped in 1939, 1989, and again in 2000. Testing the hypothesis that cumulative disturbance reduces tree vigor and growth rate even in open-grown conditions, tree diameters were compared over the sixty year period between 1939 and 2000. Soil compaction and percolation were measured on a 50 m grid, and maps were overlain to determine where site disturbance,buildings, utility lines, paths and pavements had occurred since 1860. Only 8% of the park's surface escaped disturbance; undisturbed areas occurred only in isolated patches. For all trees, trunk diameter increase averaged 0.5 cm/year for 61 years. While late successional species (e.g., Quercus, Acer) had growth rates less than expected for open-grown specimens, many early successional species (Celtis, Populus) were less affected. Despite availability of soil nutrients and lack of canopy or understory competition, tree health was generally poor in all size classes and the majority of the trees present in 1939 were in decline by 2000.  相似文献   

6.
We investigated the species composition of a fragmented forest in Nishinomiya Shrine, southeastern Hyogo Prefecture, Japan. Two escaped ornamental species, Trachycarpus fortunei and Ligustrum lucidum, and bird-dispersed deciduous trees were invading the evergreen broadleaf forest. Invasive and bird-dispersed deciduous species were most abundant along the outer edge of the forest. In 2005, restoration measures were taken to remove all individuals of T. fortunei from the forest. We estimated that, biomass density and leaf area index (LAI, leaf area per unit ground area) of T. fortunei were 0.23 kg m−2 and 0.77, respectively, which accounted for 8.9% and 27.9% of the biomass density and LAI, respectively, of the entire forest. After removal, canopy openness increased in the understory. However, the understory lacked seedlings and saplings of native species, indicating that active re-vegetation may be needed to accelerate reestablishment of native species in areas that were heavily invaded by T. fortunei. This study represents one of the first examples of active vegetation management in shrine/temple forests in Japan.  相似文献   

7.
Trees in urban areas are important sources of ecosystem services and benefits. In most towns the bulk of urban biodiversity, and trees specifically, are found in homestead gardens. But there is only limited understanding of the tree holdings in such gardens, and how they vary within and between towns, especially for developing countries where rapid urbanisation and high poverty influence the use of and reliance on land and local resources. We report on the nature of tree holdings in private gardens of poorer suburbs in three medium-sized towns along a gradient of decreasing mean annual rainfall in northern South Africa. A total of 3 217 trees were enumerated across 450 randomly selected homesteads. Most (90 %) households had at least one tree on their homestead, with an average of 7.7?±?6.1 trees. Most householders had planted the trees themselves. The density of trees declined along the moisture gradient. Within towns, tree density was positively related to garden size, which in turn was related to relative affluence and age of the suburb. Newer and poorer suburbs had the fewest trees per household. Sixty-two tree species were recorded, which were dominated by alien species, especially fruit trees. There was no relationship between the moisture gradient and tree species richness per household, but within towns there was a difference between suburbs, being lowest in the newest suburbs. Numbers of trees and species per household was positively related to age of the household head.  相似文献   

8.
Ailanthus altissima is an invasive, dioecious deciduous tree common at the interface between urban and rural areas in the mid-Atlantic region, U.S.A. To examine spatial patterns of abundance and associations with land use type, we mapped all mature female trees in nine 89.5 ha plots (805.5 ha total area) across a typical urban-to-rural land use gradient using aerial images obtained via remote sensing supplemented by detailed ground referencing. Rural plots were dominated by forest and had the lowest density of mature females (0.007 females ha−1); urban and suburban plots did not differ significantly in mean density (0.37 females ha−1 vs. 0.34 females ha−1, respectively). Individuals in urban plots were more evenly distributed, but were not associated with a wider variety of land uses and were closer to roads or openings than those in suburban plots. Given less available habitat per unit area in urban than in suburban environments, these patterns suggest that Ailanthus fits the profile of an invasive species that may be proliferating outward from urban centers. With continued disturbances associated with development in the suburban areas, and timber harvesting in the rural areas, further spread of Ailanthus seems likely.  相似文献   

9.
Several environmental factors influence tree growth at any site. The objective of this study was to examine the relationship between biotic and abiotic factors and tree growth rate (mean ring width averaged over the last 10 years) in settings ranging from urban to rural. Six clusters, each with five communities and two rural parks, were sampled in Illinois, Iowa, Minnesota, Missouri, and Wisconsin, for a total sample of 320 trees. Within each community, trees in parks, and along residential and commercial streets were sampled. Five species were sampled: silver maple (Acer saccharinum L.), honeylocust, (Gleditisia triacanthos L.), hackberry (Celtis occidentalis L.), black maple (Acer nigrum Michx F.), and basswood (Tilia americana L.). Factors were investigated for three scenarios: (i) all trees sampled in all clusters, (ii) a single species, all clusters, and (iii) all species, a single cluster.Baseline variables (cluster, place population, site, species, and age) accounted for 49–71% of observed variation in growth rate. Combined biotic factors accounted for 5 to 6% of observed variation. For all species in a single cluster, combined abiotic factors accounted for 11% of observed variation. Biotic factors related to growth rate detected using multivariate analyses included number of other trees within 9 m, presence of disease and insects, and human-induced mechanical injury. Abiotic factors that were related to tree growth included presence of pavement and core bulk density. For trees in rural parks, number of other trees within 20 m, and for trees in both rural and community parks, number of other trees within 9 m of sample trees were associated with decreased growth rate.  相似文献   

10.
Exotic trees can sustain native birds in urban woodlands   总被引:2,自引:1,他引:1  
Native landscaping has been proposed as a means of increasing native bird diversity and abundance in urban landscapes. However residents’ preferences for vegetation are such that exotic plants are often preferred over natives. We investigated the extent to which native birds foraged in three common native and three exotic tree species in mixed urban woodland during four seasons. We predicted that native birds would spend more time foraging in native trees, and that food resources provided by deciduous exotic trees would be more seasonal than those provided by non-deciduous natives. Native birds spent a lot of time foraging in two of the native tree species, but very little time in native red beech (Nothofagus fusca). They used exotic oak (Quercus robur) throughout the year, and sycamore (Acer pseudoplatanus) seasonally. Oak and European beech (Fagus sylvatica) were used by the largest number of species overall, because they attracted both native and exotic birds. With the exception of tree fuchsia (Fuschia excorticata), which produces large volumes of nectar followed by fruits, all tree species were sources of invertebrates for insectivorous feeding. Seasonality of use was high only in sycamore, indicating limited support for our second prediction. We show that being native doesn’t necessarily entail being a good food source for native birds, and popular landscaping exotic species, such as oak, provide foraging opportunities across all seasons.  相似文献   

11.
This article considers the provision of two public goods on tree networks where each agent has a single-peaked preference. We show that if there are at least four agents, then no social choice rule exists that satisfies efficiency and replacement-domination. In fact, these properties are incompatible, even if agents’ preferences are restricted to a smaller domain of symmetric single-peaked preferences. However, for rules on an interval, we prove that Miyagawa’s (Soc Choice Welf 18:527–541, 2001) characterization that only the left-peaks rule and the right-peaks rule satisfy both of these properties also holds on the domain of symmetric single-peaked preferences. Moreover, if agents’ peak locations are restricted to either the nodes or the endpoints of trees, rules exist on a subclass of trees. We provide a characterization of a family of such rules for this tree subclass.  相似文献   

12.
Wooded habitats represent hotspots of urban biodiversity, however, urban development imposes pressure on biota in these refuges. Identification of the most influential habitat attributes and the role of local urban characteristics is crucial for proper decisions on management practices supporting biodiversity. We aimed to identify well manageable fine-scale habitat attributes to suggest specific, feasible and affordable management recommendations for green space in cities. We analysed species richness of woodland-associated bird communities and incidence of individual species at 290 sites in a wide variety of green areas scattered across the city of Prague, Czech Republic. Generalized linear mixed models (GLMM) and regression tree analyses were used to identify site-scale (100 m radius sampling sites) and local-scale (200 m and 500 m radius plots) habitat attributes shaping the bird communities at individual sites. Logistic regression was used to assess the responses of individual species to habitat characteristics. Our results imply that at the site scale, management practices should focus on maintenance and promoting species-diverse and older tree stands, with a mixture of coniferous and deciduous trees. Water-bodies and accompanying riparian habitats should be maintained and carefully managed to preserve high-quality remnants of natural vegetation. Presence of a few old trees (about 12 % of tree cover with DBH?>?50 cm) or small urban standing water and watercourses enrich the bird community by at least two species. Species richness of woodland avifauna at particular sites is further supported by the total amount of tree cover in the surroundings, including scattered greenery of public spaces and private gardens. We conclude that proper management at site scale has the potential to increase biodiversity of the urban environment.  相似文献   

13.
Urban conditions are known to affect tree growth, but not all trees respond similarly to presumed stress. I test a hypothesis that successional status of hardwood tree species, rather than taxon, will differentially affect tree size relative to age, in forest versus street plantings. In central Ohio, USA, samples (N = 230) representing 15 native tree species were matched for size between rural woodlot and city street-side conditions. Their girth was measured and their age determined by a count of annual growth rings. Age and size data were analyzed by a general linear model. Most urban trees had smaller trunk diameters than rural conspecifics of the same age. However, trees of early and mid-successional ecologies, despite smaller girth, showed no reduction in growth rate over time. Late successional species appeared to be affected by proximity to impervious areas, showing reduced growth rates, and by inference,reduced ultimate size.  相似文献   

14.

High rates of intercontinental exchange of plant species have caused scientists to ask whether floristic areas with similar environments are undergoing global homogenization. We focused on riparian forests of the urban Salt River (Sonoran Desert, USA) to ask: (1) Is the forest dominated by cosmopolitan or provincial elements? (2) Which trees planted in the irrigated cityscape have established along the river? (3) Which types of restoration interventions have favored provincial species? We surveyed tree abundance, size and vigor in belt transects among five reaches that differed in degree of restoration, and obtained data on tree species composition of the urban landscape and pre-development riparian zone. Our results reveal the urban riparian forest to have many cosmopolitan elements, owing in part to spillover of trees from the cultivated cityscape (e.g., Acacia stenophylla, Vitex agnus-castus). Global spread of some regional (Neotropical) riparian taxa (e.g., Parkinsonia aculeata, Prosopis) also has contributed to the cosmopolitan status. Yet, the forests retain a distinct regional signature. Unintentional restoration of winter floods has allowed for regeneration of Salix gooddingii, a vernally-adapted provincial pioneer, although its long-term survivorship is restricted to limited micro-sites (storm drain outfalls). Urbanization-related changes in stream hydrogeomorphology explain increases in some regional species (e.g., Washingtonia spp.) that historically were excluded from the river.

Reaches restored by planting, weeding, watering, and geocountouring had the greatest abundance of provincial species and greatest floristic similarity to historic conditions.

  相似文献   

15.

The water relations of riparian trees are often closely tied to stream hydrology and channel morphology, which can be altered by urban development. In regions with limited precipitation, urban water use can generate or augment dry-season stream flows, potentially providing a water subsidy to riparian trees. However, urbanization is also associated with high storm flows that cause stream channel incision, or downcutting, which could limit the effect of flow subsidies by lowering riparian water tables. We investigated the effects of urban dry-season flow subsidies and stream channel incision on the water status of streamside trees in Sacramento, California, which has a Mediterranean climate with a distinct and lengthy dry season. For two common facultative riparian species, Quercus lobata (valley oak) and Fraxinus latifolia (Oregon ash), we analyzed both midday stem water potential (Ψstem) measurements and leaf carbon isotope signatures (?13C) to determine whether channel incision and dry-season flow had interacting effects on seasonal midday water stress and longer-term water use efficiency. We found that stream flow could substantially reduce dry-season water stress in both tree species, but only at low levels of channel incision. Leaf ?13C signatures for Q. lobata suggested increased water use efficiency in trees growing along incised streams and those lacking dry-season flow. Urban management decisions that affect both dry-season base flows and channel incision can thus influence the growth and health of riparian trees, potentially leading to broader changes in riparian ecosystems.

  相似文献   

16.
There has been an increasing interest in the evolution of urban forests. This research uses historic and digital aerial photography to quantify changes in tree density in Los Angeles, California since the 1920’s. High-resolution geographic information system analysis (4 to 6 time periods) of three regions (San Fernando Valley, Hollywood, Los Angeles Basin) of Los Angeles reveals that there has not always been an increase in tree density with time. Tree densities on public and private land were highest in the 1940’s in Hollywood, while the San Fernando Valley and Los Angeles Basin experienced a near linear increase in tree density on both private and public land since the 1920’s. When historic tree density reconstructions were examined for the 15 Los Angeles city council districts from the 1920’s, 1950’s and 2006, most districts in Los Angeles have experienced a significant increase in tree density, however, there has been wide variation in tree densities among city council districts. Trees densities have generally been higher on private land since the 1920’s and currently tree densities on private land are significantly higher than on public land. Results suggest the evolution of urban forests in Los Angeles mirrors the dynamics of urban forests in desert and grassland cities. It is possible to reconstruct the development of urban forests in sections of cities using historic and contemporary aerial photography. We estimated that Los Angeles averages approximately 104 trees per hectare (82 private land, 22 public land) based on 2006 imagery at 0.3 m resolution, however, field validation suggests that we identified only 73% of trees. Although there is still space to plant trees on public land, private land owners will need to be heavily involved in order to achieve the goals of Los Angeles’ Million Tree Initiative.  相似文献   

17.
Urban forests adjacent to interstate corridors are understudied ecosystems across cities. Despite their small area, these forests may be strategically located to provide large ecosystem services due to their ability to act as a barrier against air pollutants and noise as well as to provide flood control. The woody vegetation composition and structure of forests adjacent to urban interstates is an important determinant of their ability to provide these services. However, these forest communities may be particularly susceptible to the introduction of exotic invasive species via the interstate and the surrounding city that can potentially alter current and future forest composition. The purpose of this study was to investigate the distribution of native and exotic woody vegetation and tree regeneration in forests along three interstate corridors in Louisville, KY, and to determine potential factors (e.g., traffic density) that are correlated with patterns in the woody vegetation community. We found the most important determinants of vegetation composition along these interstate corridors were the distance from the city center and the presence of an exotic invasive shrub, Amur honeysuckle (Lonicera maackii). Compared with forested plots within 10 km of the city center, plots further from the city center had 81% lower stem density of Amur honeysuckle, 96% higher tree seedling regeneration, and 51% greater woody plant species richness. The primarily native species composition of adult trees in forests alongside urban interstates in Louisville and the regeneration of native tree species provide optimism that these forests can maintain native species while experiencing multiple impacts from the interstate as well as from the surrounding city, emphasizing their important potential for maintaining natural forest functions across the urban landscape.  相似文献   

18.
The balance of planting and mortality in a street tree population   总被引:1,自引:1,他引:0  
Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess selected risk factors for survival. We monitored a street tree population in West Oakland, CA for 5 years after an initial inventory (2006). We adapted the classic demographic balancing equation to quantify annual inputs and outputs to the system, tracking pools of live and standing dead trees. There was a 17.2 % net increase in live tree counts during the study period (995 in 2006, 1166 in 2011), with population growth observed each year. Of the live trees in 2006, 822 survived to 2011, for an annual mortality rate of 3.7 %. However, population growth was constrained by high mortality of young/small trees. Annual mortality was highest for small trees, and lower for mid-size and large trees; this represents a Type III mortality curve. We used multivariate logistic regression to evaluate the relationship between 2011 survival outcomes and inventory data from 2006. In the final model, significant associations were found for size class, foliage condition, planting location, and a multiplicative interaction term for size and foliage condition. Street tree populations are complex cultivated systems whose dynamics can be understood by a combination of longitudinal data and demographic analysis. Urban forest monitoring is important to understand the impact of tree planting programs.  相似文献   

19.
Understanding how birds exist in highly urban cities is important to maintaining biodiversity within these environments, and exotic species pose a unique opportunity to examine adaptation. The non-native monk parakeet (Myiopsitta monachus) nests mainly in cities in the United States, and in some places, is considered a nuisance by utility companies. Monk parakeets nest communally (many nests in one nest structure) and colonially (many nest structures in one area). We studied monk parakeets in urban New Jersey to determine where they nested, if nest sites were similar among parakeets nesting in trees and utility poles, and if they rebuilt following removal. Of the 51 nest structures we studied, 37% were on utility poles, 8% were on a man-made gazebo, and the rest were in trees. Nest structures located on poles were located closer to the ground, had fewer nest holes, and the distance to nearest tree was greater than for tree nest structures. The pole nest structures were closer to the top of the “canopy” or structure, and were always located on or around the pole rather than out on one of the cross beams. The nest structures were similar in size and shape whether they were located on poles, other man-made objects, or in trees. Thus monk parakeets built similar nest structures, and located them about the same distance from the ground and from houses whether they were in utility poles or in trees, leading to the conclusion that poles provide suitable sites for them. The parakeets persisted in nesting on the utility poles and another man-made gazebo despite being removed over several years, and despite the presence of other nearby unused trees. After parakeet nest structures were removed from poles by the utility company, most birds began rebuilding within the day. The persistence, despite persecution, of the monk parakeet on poles, and the fact that poles provide attractive and secure support for nest structures, suggest that they will continue to do so. Managers must either learn to live with the parakeets, redesign the utility pole structure to be less appealing to the birds, provide them with alternative nest sites on the utility poles or nearby, or continue to forcibly remove them. Local support for the parakeets, and their potential to serve as urban icons, have resulted in New Jersey’s utility company working with local enthusiasts and scientists to ensure the birds are not harmed during nest removal.  相似文献   

20.
In cities, landscape palms and trees are planted for scenic views and normally maintained with frequent irrigation. With similar water input, their morphological difference may lead to different water-use that varies seasonally. Thus, evaluating their water-use patterns is necessary to achieve proper urban water management. Here, we examined water-use characteristics of Tabebuia argentea and Ptychosperma macarthurii, a tree and a palm species, in a roof garden in Bangkok, Thailand. Self-constructed Granier’s probes were used for sap flux measurement and monitored for five months in 2016. Results showed that palm transpired 3–4 times higher water than tree daily. With frequent watering, tree was more sensitive to increasing vapor pressure deficit (D) than palm on rain-free days. When rainfall occurred, however, both species became less sensitive to D and continued consuming more water at high D. Extending the analysis to include a hypothetical warming climate with +4.8 °C temperature, we found that tree saved more water than palm on rain-free days. However, daily transpiration of both species increased similarly by 14–18% on rainy days. These results imply that Tabebuia argentea may provide ecosystem benefits by conservatively using water under drought and decelerating runoff from the garden when storms come. In contrast, Ptychosperma macarthurii may provide ecosystem disservice with high water-use in dry season but may slow down runoff in wet season and therefore benefiting downstream ecosystems. These findings are useful for selective planting associated with future changes in precipitation patterns, leading to sustainable urban water management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号