共查询到20条相似文献,搜索用时 31 毫秒
1.
C. P. Robert T. Rydén & D. M. Titterington 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2000,62(1):57-75
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism. 相似文献
2.
P. J. Lenk 《Journal of the Royal Statistical Society. Series B, Statistical methodology》1999,61(4):863-879
This paper presents the Bayesian analysis of a semiparametric regression model that consists of parametric and nonparametric components. The nonparametric component is represented with a Fourier series where the Fourier coefficients are assumed a priori to have zero means and to decay to 0 in probability at either algebraic or geometric rates. The rate of decay controls the smoothness of the response function. The posterior analysis automatically selects the amount of smoothing that is coherent with the model and data. Posterior probabilities of the parametric and semiparametric models provide a method for testing the parametric model against a non-specific alternative. The Bayes estimator's mean integrated squared error compares favourably with the theoretically optimal estimator for kernel regression. 相似文献
3.
Håvard Rue Ingelin Steinsland Sveinung Erland 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2004,66(4):877-892
Summary. Gaussian Markov random-field (GMRF) models are frequently used in a wide variety of applications. In most cases parts of the GMRF are observed through mutually independent data; hence the full conditional of the GMRF, a hidden GMRF (HGMRF), is of interest. We are concerned with the case where the likelihood is non-Gaussian, leading to non-Gaussian HGMRF models. Several researchers have constructed block sampling Markov chain Monte Carlo schemes based on approximations of the HGMRF by a GMRF, using a second-order expansion of the log-density at or near the mode. This is possible as the GMRF approximation can be sampled exactly with a known normalizing constant. The Markov property of the GMRF approximation yields computational efficiency.The main contribution in the paper is to go beyond the GMRF approximation and to construct a class of non-Gaussian approximations which adapt automatically to the particular HGMRF that is under study. The accuracy can be tuned by intuitive parameters to nearly any precision. These non-Gaussian approximations share the same computational complexity as those which are based on GMRFs and can be sampled exactly with computable normalizing constants. We apply our approximations in spatial disease mapping and model-based geostatistical models with different likelihoods, obtain procedures for block updating and construct Metropolized independence samplers. 相似文献
4.
Mogens Bladt Michael Sørensen 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2005,67(3):395-410
Summary. Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Markov chain Monte Carlo procedure. When the maximum likelihood estimator does not exist, an estimator can be obtained by using a penalized likelihood function or by the Markov chain Monte Carlo procedure with a suitable prior. The methodology and its implementation are illustrated by examples and simulation studies. 相似文献
5.
In this paper we present a review of population-based simulation for static inference problems. Such methods can be described as generating a collection of random variables {X
n
}
n=1,…,N
in parallel in order to simulate from some target density π (or potentially sequence of target densities). Population-based simulation is important as many challenging sampling problems
in applied statistics cannot be dealt with successfully by conventional Markov chain Monte Carlo (MCMC) methods. We summarize
population-based MCMC (Geyer, Computing Science and Statistics: The 23rd Symposium on the Interface, pp. 156–163, 1991; Liang and Wong, J. Am. Stat. Assoc. 96, 653–666, 2001) and sequential Monte Carlo samplers (SMC) (Del Moral, Doucet and Jasra, J. Roy. Stat. Soc. Ser. B 68, 411–436, 2006a), providing a comparison of the approaches. We give numerical examples from Bayesian mixture modelling (Richardson and Green,
J. Roy. Stat. Soc. Ser. B 59, 731–792, 1997). 相似文献
6.
Drew Creal 《Econometric Reviews》2013,32(3):245-296
This article serves as an introduction and survey for economists to the field of sequential Monte Carlo methods which are also known as particle filters. Sequential Monte Carlo methods are simulation-based algorithms used to compute the high-dimensional and/or complex integrals that arise regularly in applied work. These methods are becoming increasingly popular in economics and finance; from dynamic stochastic general equilibrium models in macro-economics to option pricing. The objective of this article is to explain the basics of the methodology, provide references to the literature, and cover some of the theoretical results that justify the methods in practice. 相似文献
7.
Bayesian inference for generalized additive mixed models based on Markov random field priors 总被引:9,自引:0,他引:9
Ludwig Fahrmeir & Stefan Lang 《Journal of the Royal Statistical Society. Series C, Applied statistics》2001,50(2):201-220
Most regression problems in practice require flexible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a unified approach for Bayesian inference via Markov chain Monte Carlo simulation in generalized additive and semiparametric mixed models. Different types of covariates, such as the usual covariates with fixed effects, metrical covariates with non-linear effects, unstructured random effects, trend and seasonal components in longitudinal data and spatial covariates, are all treated within the same general framework by assigning appropriate Markov random field priors with different forms and degrees of smoothness. We applied the approach in several case-studies and consulting cases, showing that the methods are also computationally feasible in problems with many covariates and large data sets. In this paper, we choose two typical applications. 相似文献
8.
Walter R. Gilks & Carlo Berzuini 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2001,63(1):127-146
Markov chain Monte Carlo (MCMC) sampling is a numerically intensive simulation technique which has greatly improved the practicality of Bayesian inference and prediction. However, MCMC sampling is too slow to be of practical use in problems involving a large number of posterior (target) distributions, as in dynamic modelling and predictive model selection. Alternative simulation techniques for tracking moving target distributions, known as particle filters, which combine importance sampling, importance resampling and MCMC sampling, tend to suffer from a progressive degeneration as the target sequence evolves. We propose a new technique, based on these same simulation methodologies, which does not suffer from this progressive degeneration. 相似文献
9.
Marcelo Hartmann 《统计学通讯:模拟与计算》2017,46(7):5285-5302
In this article, we propose to evaluate and compare Markov chain Monte Carlo (MCMC) methods to estimate the parameters in a generalized extreme value model. We employed the Bayesian approach using traditional Metropolis-Hastings methods, Hamiltonian Monte Carlo (HMC), and Riemann manifold HMC (RMHMC) methods to obtain the approximations to the posterior marginal distributions of interest. Applications to real datasets and simulation studies provide evidence that the extra analytical work involved in Hamiltonian Monte Carlo algorithms is compensated by a more efficient exploration of the parameter space. 相似文献
10.
R. J. Boys D. A. Henderson & D. J. Wilkinson 《Journal of the Royal Statistical Society. Series C, Applied statistics》2000,49(2):269-285
In recent years there has been a rapid growth in the amount of DNA being sequenced and in its availability through genetic databases. Statistical techniques which identify structure within these sequences can be of considerable assistance to molecular biologists particularly when they incorporate the discrete nature of changes caused by evolutionary processes. This paper focuses on the detection of homogeneous segments within heterogeneous DNA sequences. In particular, we study an intron from the chimpanzee α-fetoprotein gene; this protein plays an important role in the embryonic development of mammals. We present a Bayesian solution to this segmentation problem using a hidden Markov model implemented by Markov chain Monte Carlo methods. We consider the important practical problem of specifying informative prior knowledge about sequences of this type. Two Gibbs sampling algorithms are contrasted and the sensitivity of the analysis to the prior specification is investigated. Model selection and possible ways to overcome the label switching problem are also addressed. Our analysis of intron 7 identifies three distinct homogeneous segment types, two of which occur in more than one region, and one of which is reversible. 相似文献
11.
Bayesian analysis of nonlinear and non-Gaussian state space models via multiple-try sampling methods
Mike K. P. So 《Statistics and Computing》2006,16(2):125-141
We develop in this paper three multiple-try blocking schemes for Bayesian analysis of nonlinear and non-Gaussian state space
models. To reduce the correlations between successive iterates and to avoid getting trapped in a local maximum, we construct
Markov chains by drawing state variables in blocks with multiple trial points. The first and second methods adopt autoregressive
and independent kernels to produce the trial points, while the third method uses samples along suitable directions. Using
the time series structure of the state space models, the three sampling schemes can be implemented efficiently. In our multimodal
examples, the three multiple-try samplers are able to generate the desired posterior sample, whereas existing methods fail
to do so. 相似文献
12.
We develop Metropolis-Hastings algorithms for exact conditional inference, including goodness-of-fit tests, confidence intervals and residual analysis, for binomial and multinomial logistic regression models. We present examples where the exact results, obtained by enumeration, are available for comparison. We also present examples where Monte Carlo methods provide the only feasible approach for exact inference. 相似文献
13.
Nikolaos Demiris Philip D. O'Neill 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2005,67(5):731-745
Summary. The paper is concerned with new methodology for statistical inference for final outcome infectious disease data using certain structured population stochastic epidemic models. A major obstacle to inference for such models is that the likelihood is both analytically and numerically intractable. The approach that is taken here is to impute missing information in the form of a random graph that describes the potential infectious contacts between individuals. This level of imputation overcomes various constraints of existing methodologies and yields more detailed information about the spread of disease. The methods are illustrated with both real and test data. 相似文献
14.
S. P. Brooks 《Statistics and Computing》1998,8(3):267-274
Yu (1995) provides a novel convergence diagnostic for Markov chain Monte Carlo (MCMC) which provides a qualitative measure of mixing for Markov chains via a cusum path plot for univariate parameters of interest. The method is based upon the output of a single replication of an MCMC sampler and is therefore widely applicable and simple to use. One criticism of the method is that it is subjective in its interpretation, since it is based upon a graphical comparison of two cusum path plots. In this paper, we develop a quantitative measure of smoothness which we can associate with any given cusum path, and show how we can use this measure to obtain a quantitative measure of mixing. In particular, we derive the large sample distribution of this smoothness measure, so that objective inference is possible. In addition, we show how this quantitative measure may also be used to provide an estimate of the burn-in length for any given sampler. We discuss the utility of this quantitative approach, and highlight a problem which may occur if the chain is able to remain in any one state for some period of time. We provide a more general implementation of the method to overcome the problem in such cases. 相似文献
15.
J. P. Hughes P Guttorp & S. P. Charles 《Journal of the Royal Statistical Society. Series C, Applied statistics》1999,48(1):15-30
A non-homogeneous hidden Markov model is proposed for relating precipitation occurrences at multiple rain-gauge stations to broad scale atmospheric circulation patterns (the so-called 'downscaling problem'). We model a 15-year sequence of winter data from 30 rain stations in south-western Australia. The first 10 years of data are used for model development and the remaining 5 years are used for model evaluation. The fitted model accurately reproduces the observed rainfall statistics in the reserved data despite a shift in atmospheric circulation (and, consequently, rainfall) between the two periods. The fitted model also provides some useful insights into the processes driving rainfall in this region. 相似文献
16.
John E. Kolassa 《Statistics and Computing》2001,11(1):83-87
Kolassa and Tanner (J. Am. Stat. Assoc. (1994) 89, 697–702) present the Gibbs-Skovgaard algorithm for approximate conditional inference. Kolassa (Ann Statist. (1999), 27, 129–142) gives conditions under which their Markov chain is known to converge. This paper calculates explicity bounds on convergence rates in terms calculable directly from chain transition operators. These results are useful in cases like those considered by Kolassa (1999). 相似文献
17.
Ming Gao Gu & Hong-Tu Zhu 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2001,63(2):339-355
We propose a two-stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis–Hastings–Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off-line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins–Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster. 相似文献
18.
Bayesian models for relative archaeological chronology building 总被引:1,自引:0,他引:1
Caitlin E. Buck & Sujit K. Sahu 《Journal of the Royal Statistical Society. Series C, Applied statistics》2000,49(4):423-440
For many years, archaeologists have postulated that the numbers of various artefact types found within excavated features should give insight about their relative dates of deposition even when stratigraphic information is not present. A typical data set used in such studies can be reported as a cross-classification table (often called an abundance matrix or, equivalently, a contingency table) of excavated features against artefact types. Each entry of the table represents the number of a particular artefact type found in a particular archaeological feature. Methodologies for attempting to identify temporal sequences on the basis of such data are commonly referred to as seriation techniques. Several different procedures for seriation including both parametric and non-parametric statistics have been used in an attempt to reconstruct relative chronological orders on the basis of such contingency tables. We develop some possible model-based approaches that might be used to aid in relative, archaeological chronology building. We use the recently developed Markov chain Monte Carlo method based on Langevin diffusions to fit some of the models proposed. Predictive Bayesian model choice techniques are then employed to ascertain which of the models that we develop are most plausible. We analyse two data sets taken from the literature on archaeological seriation. 相似文献
19.
《Journal of the Korean Statistical Society》2014,43(1):31-45
Monte Carlo methods for the exact inference have received much attention recently in complete or incomplete contingency table analysis. However, conventional Markov chain Monte Carlo, such as the Metropolis–Hastings algorithm, and importance sampling methods sometimes generate the poor performance by failing to produce valid tables. In this paper, we apply an adaptive Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm (SAMC; Liang, Liu, & Carroll, 2007), to the exact test of the goodness-of-fit of the model in complete or incomplete contingency tables containing some structural zero cells. The numerical results are in favor of our method in terms of quality of estimates. 相似文献
20.
AJAY JASRA DAVID A. STEPHENS ARNAUD DOUCET THEODOROS TSAGARIS 《Scandinavian Journal of Statistics》2011,38(1):1-22
Abstract. We investigate simulation methodology for Bayesian inference in Lévy‐driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user‐set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model. 相似文献