首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On backbone coloring of graphs   总被引:1,自引:0,他引:1  
Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G,H) is a mapping f: V(G)→{1,2,…,k} such that |f(u)−f(v)|≥2 if uvE(H) and |f(u)−f(v)|≥1 if uvE(G)\E(H). The backbone chromatic number of (G,H) is the smallest integer k such that (G,H) has a backbone-k-coloring. In this paper, we characterize the backbone chromatic number of Halin graphs G=TC with respect to given spanning trees T. Also we study the backbone coloring for other special graphs such as complete graphs, wheels, graphs with small maximum average degree, graphs with maximum degree 3, etc.  相似文献   

2.
Suppose G is a graph of p vertices. A proper labeling f of G is a one-to-one mapping f:V(G)→{1,2,…,p}. The cyclic bandwidth sum of G with respect to f is defined by CBS f (G)=∑ uvE(G)|f(v)−f(u)| p , where |x| p =min {|x|,p−|x|}. The cyclic bandwidth sum of G is defined by CBS(G)=min {CBS f (G): f is a proper labeling of G}. The bandwidth sum of G with respect to f is defined by BS f (G)=∑ uvE(G)|f(v)−f(u)|. The bandwidth sum of G is defined by BS(G)=min {BS f (G): f is a proper labeling of G}. In this paper, we give a necessary and sufficient condition for BS(G)=CBS(G), and use this to show that BS(T)=CBS(T) when T is a tree. We also find cyclic bandwidth sums of complete bipartite graphs. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. Supported in part by the National Science Council under grants NSC91-2115-M-156-001.  相似文献   

3.
For a positive integer k, a total {k}-dominating function of a graph G is a function f from the vertex set V(G) to the set {0,1,2,…,k} such that for any vertex vV(G), the condition ∑ uN(v) f(u)≥k is fulfilled, where N(v) is the open neighborhood of v. A set {f 1,f 2,…,f d } of total {k}-dominating functions on G with the property that ?i=1dfi(v) £ k\sum_{i=1}^{d}f_{i}(v)\le k for each vV(G), is called a total {k}-dominating family (of functions) on G. The maximum number of functions in a total {k}-dominating family on G is the total {k}-domatic number of G, denoted by dt{k}(G)d_{t}^{\{k\}}(G). Note that dt{1}(G)d_{t}^{\{1\}}(G) is the classic total domatic number d t (G). In this paper we initiate the study of the total {k}-domatic number in graphs and we present some bounds for dt{k}(G)d_{t}^{\{k\}}(G). Many of the known bounds of d t (G) are immediate consequences of our results.  相似文献   

4.
An edge coloring of a graph G=(V,E) is a function c:E→ℕ that assigns a color c(e) to each edge eE such that c(e)≠c(e′) whenever e and e′ have a common endpoint. Denoting S v (G,c) the set of colors assigned to the edges incident to a vertex vV, and D v (G,c) the minimum number of integers which must be added to S v (G,c) to form an interval, the deficiency D(G,c) of an edge coloring c is defined as the sum ∑ vV D v (G,c), and the span of c is the number of colors used in c. The problem of finding, for a given graph, an edge coloring with a minimum deficiency is NP-hard. We give new lower bounds on the minimum deficiency of an edge coloring and on the span of edge colorings with minimum deficiency. We also propose a tabu search algorithm to solve the minimum deficiency problem and report experiments on various graph instances, some of them having a known optimal deficiency.  相似文献   

5.
Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a k -distance paired dominating set of G if D is a k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect matching. The minimum cardinality of a k-distance paired dominating set for graph G is the k -distance paired domination number, denoted by γ p k (G). In this paper, we determine the exact k-distance paired domination number of generalized Petersen graphs P(n,1) and P(n,2) for all k≥1.  相似文献   

6.
A k-colouring of a graph G=(V,E) is a mapping c:V→{1,2,…,k} such that c(u)≠c(v) whenever uv is an edge. The reconfiguration graph of the k-colourings of G contains as its vertex set the k-colourings of G, and two colourings are joined by an edge if they differ in colour on just one vertex of G. We introduce a class of k-colourable graphs, which we call k-colour-dense graphs. We show that for each k-colour-dense graph G, the reconfiguration graph of the ?-colourings of G is connected and has diameter O(|V|2), for all ?k+1. We show that this graph class contains the k-colourable chordal graphs and that it contains all chordal bipartite graphs when k=2. Moreover, we prove that for each k≥2 there is a k-colourable chordal graph G whose reconfiguration graph of the (k+1)-colourings has diameter Θ(|V|2).  相似文献   

7.
Given a k-connected graph G=(V,E) and V V, k-Vertex-Connected Subgraph Augmentation Problem (k-VCSAP) is to find SVV with minimum cardinality such that the subgraph induced by V S is k-connected. In this paper, we study the hardness of k-VCSAP in undirect graphs. We first prove k-VCSAP is APX-hard. Then, we improve the lower bound in two ways by relying on different assumptions. That is, we prove no algorithm for k-VCSAP has a PR better than O(log (log n)) unless P=NP and O(log n) unless NPDTIME(n O(log log n)), where n is the size of an input graph.  相似文献   

8.
A k-L(2,1)-labelling of a graph G is a mapping f:V(G)→{0,1,2,…,k} such that |f(u)?f(v)|≥2 if uvE(G) and f(u)≠f(v) if u,v are distance two apart. The smallest positive integer k such that G admits a k-L(2,1)-labelling is called the λ-number of G. In this paper we study this quantity for cubic Cayley graphs (other than the prism graphs) on dihedral groups, which are called brick product graphs or honeycomb toroidal graphs. We prove that the λ-number of such a graph is between 5 and 7, and moreover we give a characterisation of such graphs with λ-number 5.  相似文献   

9.
Given a graph G=(V,E) with node weight w:VR +, the minimum weighted connected vertex cover problem (MWCVC) is to seek a subset of vertices of the graph with minimum total weight, such that for any edge of the graph, at least one endpoint of the edge is contained in the subset, and the subgraph induced by this subset is connected. In this paper, we study the problem on unit disk graph. A polynomial-time approximation scheme (PTAS) for MWCVC is presented under the condition that the graph is c-local.  相似文献   

10.
Let j and k be two positive integers with jk. An L(j,k)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G such that the difference between labels of any two adjacent vertices is at least j, and the difference between labels of any two vertices that are at distance two apart is at least k. The minimum range of labels over all L(j,k)-labellings of a graph G is called the λ j,k -number of G, denoted by λ j,k (G). A σ(j,k)-circular labelling with span m of a graph G is a function f:V(G)→{0,1,…,m−1} such that |f(u)−f(v)| m j if u and v are adjacent; and |f(u)−f(v)| m k if u and v are at distance two apart, where |x| m =min {|x|,m−|x|}. The minimum m such that there exists a σ(j,k)-circular labelling with span m for G is called the σ j,k -number of G and denoted by σ j,k (G). The λ j,k -numbers of Cartesian products of two complete graphs were determined by Georges, Mauro and Stein ((2000) SIAM J Discret Math 14:28–35). This paper determines the λ j,k -numbers of direct products of two complete graphs and the σ j,k -numbers of direct products and Cartesian products of two complete graphs. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. This work is partially supported by FRG, Hong Kong Baptist University, Hong Kong; NSFC, China, grant 10171013; and Southeast University Science Foundation grant XJ0607230.  相似文献   

11.
In a graph G, a vertex dominates itself and its neighbors. A subset SeqV(G) is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of GS at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γ m , and of an m-tuple dominating set is mtupledom. For a property π of subsets of V(G), with associated parameter f_π, the k-restricted π-number r k (G,f_π) is the smallest integer r such that given any subset K of (at most) k vertices of G, there exists a π set containing K of (at most) cardinality r. We show that for 1< k < n where n is the order of G: (a) if G has minimum degree m, then r k (G m ) < (mn+k)/(m+1); (b) if G has minimum degree 3, then r k (G,γ) < (3n+5k)/8; and (c) if G is connected with minimum degree at least 2, then r k (G,ddom) < 3n/4 + 2k/7. These bounds are sharp. Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

12.
Let G=(V,E) be an undirected graph in which every vertex vV is assigned a nonnegative integer w(v). A w-packing is a collection of cycles (repetition allowed) in G such that every vV is contained at most w(v) times by the members of . Let 〈w〉=2|V|+∑ vV ⌈log (w(v)+1)⌉ denote the binary encoding length (input size) of the vector (w(v): vV) T . We present an efficient algorithm which finds in O(|V|8w2+|V|14) time a w-packing of maximum cardinality in G provided packing and covering cycles in G satisfy the ℤ+-max-flow min-cut property.  相似文献   

13.
Given a simple, undirected graph G=(V,E) and a weight function w:E→ℤ+, we consider the problem of orienting all edges in E so that the maximum weighted outdegree among all vertices is minimized. It has previously been shown that the unweighted version of the problem is solvable in polynomial time while the weighted version is (weakly) NP-hard. In this paper, we strengthen these results as follows: (1) We prove that the weighted version is strongly NP-hard even if all edge weights belong to the set {1,k}, where k is any fixed integer greater than or equal to 2, and that there exists no pseudo-polynomial time approximation algorithm for this problem whose approximation ratio is smaller than (1+1/k) unless P = NP; (2) we present a new polynomial-time algorithm that approximates the general version of the problem within a ratio of (2−1/k), where k is the maximum weight of an edge in G; (3) we show how to approximate the special case in which all edge weights belong to {1,k} within a ratio of 3/2 for k=2 (note that this matches the inapproximability bound above), and (2−2/(k+1)) for any k≥3, respectively, in polynomial time.  相似文献   

14.
Let G=(V,E) be a connected multigraph, whose edges are associated with labels specified by an integer-valued function ℒ:E→ℕ. In addition, each label ∈ℕ has a non-negative cost c(). The minimum label spanning tree problem (MinLST) asks to find a spanning tree in G that minimizes the overall cost of the labels used by its edges. Equivalently, we aim at finding a minimum cost subset of labels I⊆ℕ such that the edge set {eE:ℒ(e)∈I} forms a connected subgraph spanning all vertices. Similarly, in the minimum label s t path problem (MinLP) the goal is to identify an st path minimizing the combined cost of its labels. The main contributions of this paper are improved approximation algorithms and hardness results for MinLST and MinLP.  相似文献   

15.
For a graph G with vertex set V and edge set E, a (k,k′)-total list assignment L of G assigns to each vertex v a set L(v) of k real numbers as permissible weights, and assigns to each edge e a set L(e) of k′ real numbers as permissible weights. If for any (k,k′)-total list assignment L of G, there exists a mapping f:VE→? such that f(y)∈L(y) for each yVE, and for any two adjacent vertices u and v, ∑ yN(u) f(uy)+f(u)≠∑ xN(v) f(vx)+f(v), then G is (k,k′)-total weight choosable. It is conjectured by Wong and Zhu that every graph is (2,2)-total weight choosable, and every graph with no isolated edges is (1,3)-total weight choosable. In this paper, it is proven that a graph G obtained from any loopless graph H by subdividing each edge with at least one vertex is (1,3)-total weight choosable and (2,2)-total weight choosable. It is shown that s-degenerate graphs (with s≥2) are (1,2s)-total weight choosable. Hence planar graphs are (1,10)-total weight choosable, and outerplanar graphs are (1,4)-total weight choosable. We also give a combinatorial proof that wheels are (2,2)-total weight choosable, as well as (1,3)-total weight choosable.  相似文献   

16.
Let G be a finite undirected bipartite graph. Let u, v be two vertices of G from different partite sets. A collection of k internal vertex disjoint paths joining u to v is referred as a k-container C k (u,v). A k-container is a k *-container if it spans all vertices of G. We define G to be a k *-laceable graph if there is a k *-container joining any two vertices from different partite sets. A k *-container C k *(u,v)={P 1,…,P k } is equitable if ||V(P i )|−|V(P j )||≤2 for all 1≤i,jk. A graph is equitably k *-laceable if there is an equitable k *-container joining any two vertices in different partite sets. Let Q n be the n-dimensional hypercube. In this paper, we prove that the hypercube Q n is equitably k *-laceable for all kn−4 and n≥5. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. The work of H.-M. Huang was supported in part by the National Science Council of the Republic of China under NSC94-2115-M008-013.  相似文献   

17.
For a permutation f of the vertex set V(G) of a connected graph G, let δ f (x,y)=|d(x,y)−d(f(x),f(y))|. Define the displacement δ f (G) of G with respect to f to be the sum of δ f (x,y) over all unordered pairs {x,y} of distinct vertices of G. Let π(G) denote the smallest positive value of δ f (G) among the n! permutations f of V(G). In this note, we determine all trees T with π(T)=2 or 4. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday.  相似文献   

18.
Given a graph G=(V,E) with edge weights w e ∈ℝ, the optimum cooperation problem consists in determining a partition of the graph that maximizes the sum of weights of the edges with nodes in the same class plus the number of the classes of the partition. The problem is also known in the literature as the optimum attack problem in networks. Furthermore, a relevant physics application exists.  相似文献   

19.
Let G=(V,E) be a graph. A set SV is a restrained dominating set if every vertex in VS is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then gr(G) 3 \fracn4\gamma_{r}(G)\geq \frac{n}{4} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then gr(G) £ \frac5n11.\gamma _{r}(G)\leq \frac{5n}{11}. Lastly, we show that if G is a claw-free cubic graph, then γ r (G)=γ(G).  相似文献   

20.
Given a graph G=(V,E) with node weight w:VR + and a subset SV, find a minimum total weight tree interconnecting all nodes in S. This is the node-weighted Steiner tree problem which will be studied in this paper. In general, this problem is NP-hard and cannot be approximated by a polynomial time algorithm with performance ratio aln n for any 0<a<1 unless NPDTIME(n O(log n)), where n is the number of nodes in s. In this paper, we are the first to show that even though for unit disk graphs, the problem is still NP-hard and it has a polynomial time constant approximation. We present a 2.5ρ-approximation where ρ is the best known performance ratio for polynomial time approximation of classical Steiner minimum tree problem in graphs. As a corollary, we obtain that there is a polynomial time (9.875+ε)-approximation algorithm for minimum weight connected dominating set in unit disk graphs, and also there is a polynomial time (4.875+ε)-approximation algorithm for minimum weight connected vertex cover in unit disk graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号