共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that when the multicollinearity exists in the logistic regression model, variance of maximum likelihood estimator is unstable. As a remedy, Schaefer et al. presented a ridge estimator in the logistic regression model. Making use of the ridge estimator, when some linear restrictions are also present, we introduce a restricted ridge estimator in the logistic regression model. Statistical properties of this newly defined estimator will be studied and comparisons are done in the simulation study in the sense of mean squared error criterion. A real-data example and a simulation study are introduced to discuss the performance of this estimator. 相似文献
2.
The necessary and sufficient conditions for the inadmissibility of the ridge regression is discussed under two different criteria, namely, average loss and Pitman nearness. Although the two criteria are very different, same conclusions are obtained. The loss functions considered in this article are th likelihood loss function and the Mahalanobis loss function. The two loss functions are motivated from the point of view of classification of two normal populations. Under the Mahalanobis loss it is demonstrated that the ridge regression is always inadmissible as long as the errors are assumed to be symmetrically distributed about the origin. 相似文献
3.
Nimet Özbay Selahattin Kaçıranlar Issam Dawoud 《Journal of Statistical Computation and Simulation》2017,87(4):753-765
The presence of autocorrelation in errors and multicollinearity among the regressors have undesirable effects on the least-squares regression. There are a wide range of methods which are proposed to overcome the usefulness of the ordinary least-squares estimator or the generalized least-squares estimator, such as the Stein-rule, restricted least-squares or ridge estimator. Therefore, we introduce a new feasible generalized restricted ridge regression (FGRR) estimator to examine multicollinearity and autocorrelation problems simultaneously for the general linear regression model. We also derive some statistical properties of the FGRR estimator and comparisons have been conducted using matrix mean-square error. Moreover, a Monte Carlo simulation experiment is performed to investigate the performance of the proposed estimator over the others. 相似文献
4.
Masuo Nomura 《统计学通讯:模拟与计算》2013,42(3):729-743
The purpose of this paper is two-fold. One is to compare the almost unbiased generalized ridge regression (AUGRR) estimator proposed by Singh, Chaubey and Dwivedi (1986) with the generalized ridge regression (GRR) estimator and with the ordinary least squares (OLS) estimator in terms of the mean squared error criterion. Second is to examine small sample properties of the operational almost unbiased ordinary ridge regression (AUORR) estimator by Monte Carlo experiments. 相似文献
5.
Jibo Wu 《Statistics》2016,50(6):1363-1375
Tabakan and Akdeniz [Difference-based ridge estimator of parameters in partial linear model. Statist Pap. 2010;51(2):357–368] proposed a difference-based ridge estimator (DBRE) in the partial linear model. In this paper, a new estimator is introduced by jackknifing the DBRE that Tabakan and Akdeniz presented. We investigate the performance of this new estimator over the DBRE and difference-based estimator introduced by Yatchew [An elementary estimator of the partial linear model. Econom Lett. 1997;57:135–143] in terms of mean-squared error and mean-squared error matrix and a numerical example is provided to demonstrate the performance of the estimators. 相似文献
6.
J. S. Chawla 《Statistical Papers》1988,29(1):227-230
The necessary and sufficient condition is obtained such that ridge estimator is better than the least squares estimator relative
to the matrix mean square error. 相似文献
7.
A new biased estimator based on ridge estimation 总被引:3,自引:0,他引:3
In this paper we introduce a new biased estimator for the vector of parameters in a linear regression model and discuss its properties. We show that our new biased estimator is superior, in the mean square error(mse) sense, to the ordinary least squares (OLS) estimator, the ordinary ridge regression (ORR) estimator and the Liu estimator. We also compare the performance of our new biased estimator with two other special Liu-type estimators proposed in Liu (2003). We illustrate our findings with a numerical example based on the widely analysed dataset on Portland cement. 相似文献
8.
Kazuhiro Ohtani 《统计学通讯:理论与方法》2013,42(5):1571-1578
The purpose of this paper is to examine small sample properties of the operational almost unbiased generalized ridge estimator (E) . The exact first two moments of theAUGRE are derived. It is shown that although the reduction of the bias of the AUGRE is substantial, the AUGRE is rather inefficient than the generalized ridge estimator without the bias correction in a wide range of a noncen-trality parameter in terms of the mean square error. 相似文献
9.
AbstractIn this article, when it is suspected that regression coefficients may be restricted to a subspace, we discuss the parameter estimation of regression coefficients in a multiple regression model. Then, in order to improve the preliminary test almost ridge estimator, we study the positive-rule Stein-type almost unbiased ridge estimator based on the positive-rule stein-type shrinkage estimator and almost unbiased ridge estimator. After that, quadratic bias and quadratic risk values of the new estimator are derived and compared with some relative estimators. And we also discuss the option of parameter k. Finally, we perform a real data example and a Monte Carlo study to illustrate theoretical results. 相似文献
10.
11.
《统计学通讯:理论与方法》2012,41(3):726-737
AbstractTo overcome multicollinearity, a new stochastic mixed Liu estimator is presented and its efficiency is considered. We also compare the proposed estimators in the sense of matrix mean squared error criteria. Finally a numerical example and a simulation study are given to show the performance of the estimators. 相似文献
12.
It is known that collinearity among the explanatory variables in generalized linear models (GLMs) inflates the variance of maximum likelihood estimators. To overcome multicollinearity in GLMs, ordinary ridge estimator and restricted estimator were proposed. In this study, a restricted ridge estimator is introduced by unifying the ordinary ridge estimator and the restricted estimator in GLMs and its mean squared error (MSE) properties are discussed. The MSE comparisons are done in the context of first-order approximated estimators. The results are illustrated by a numerical example and two simulation studies are conducted with Poisson and binomial responses. 相似文献
13.
《统计学通讯:理论与方法》2012,41(1):1-15
AbstractWe consider adaptive ridge regression estimators in the general linear model with homogeneous spherically symmetric errors. A restriction on the parameter of regression is considered. We assume that all components are non negative (i.e. on the positive orthant). For this setting, we produce under general quadratic loss such estimators whose risk function dominates that of the least squares provided the number of regressors in the least fore. 相似文献
14.
Krishna Kadiyala 《Revue canadienne de statistique》1980,8(1):47-58
In this paper we study the mean square error properties of the generalized ridge estimator. We obtain the exact and the approximate bias and the mean square error of the operational generalized ridge estimator in terms of G( ) functions. We show, among other things, that the operational generalized ridge estimator does not dominate the ordinary least squares estimator up to a certain order of approximation. Finally, we note that the iterative procedures to obtain coverging ridge estimators should be used with caution. 相似文献
15.
《Journal of Statistical Computation and Simulation》2012,82(1):124-134
In this article, a two-parameter estimator is proposed to combat multicollinearity in the negative binomial regression model. The proposed two-parameter estimator is a general estimator which includes the maximum likelihood (ML) estimator, the ridge estimator (RE) and the Liu estimator as special cases. Some properties on the asymptotic mean-squared error (MSE) are derived and necessary and sufficient conditions for the superiority of the two-parameter estimator over the ML estimator and sufficient conditions for the superiority of the two-parameter estimator over the RE and the Liu estimator in the asymptotic mean-squared error (MSE) matrix sense are obtained. Furthermore, several methods and three rules for choosing appropriate shrinkage parameters are proposed. Finally, a Monte Carlo simulation study is given to illustrate some of the theoretical results. 相似文献
16.
In this paper, we derive the almost unbiased generalized Liu estimator and examine an exact unbiased estimator of the bias and mean squared error of the feasible generalized Liu estimator . We compare the almost unbiased generalized Liu estimator (AUGLE) with the generalized Liu estimator (GLE) and with the ordinary least squares estimator (OLSE). 相似文献
17.
Nityananda Sarkar 《统计学通讯:理论与方法》2013,42(7):1987-2000
It is well-known in the literature on multicollinearity that one of the major consequences of multicollinearity on the ordinary least squares estimator is that the estimator produces large sampling variances, which in turn might inappropriately lead to exclusion of otherwise significant coefficients from the model. To circumvent this problem, two accepted estimation procedures which are often suggested are the restricted least squares method and the ridge regression method. While the former leads to a reduction in the sampling variance of the estimator, the later ensures a smaller mean square error value for the estimator. In this paper we have proposed a new estimator which is based on a criterion that combines the ideas underlying these two estimators. The standard properties of this new estimator have been studied in the paper. It has also been shown that this estimator is superior to both the restricted least squares as well as the ordinary ridge regression estimators by the criterion of mean sauare error of the estimator of the regression coefficients when the restrictions are indeed correct. The conditions for superiority of this estimator over the other two have also been derived for the situation when the restrictions are not correct. 相似文献
18.
In the linear regression model with elliptical errors, a shrinkage ridge estimator is proposed. In this regard, the restricted ridge regression estimator under sub-space restriction is improved by incorporating a general function which satisfies Taylor’s series expansion. Approximate quadratic risk function of the proposed shrinkage ridge estimator is evaluated in the elliptical regression model. A Monte Carlo simulation study and analysis based on a real data example are considered for performance analysis. It is evident from the numerical results that the shrinkage ridge estimator performs better than both unrestricted and restricted estimators in the multivariate t-regression model, for some specific cases. 相似文献
19.
AbstractThis article presents a non-stochastic version of the Generalized Ridge Regression estimator that arises from a discussion of the properties of a Generalized Ridge Regression estimator whose shrinkage parameters are found to be close to their upper bounds. The resulting estimator takes the form of a shrinkage estimator that is superior to both the Ordinary Least Squares estimator and the James-Stein estimator under certain conditions. A numerical study is provided to investigate the range of signal to noise ratio under which the new estimator dominates the James-Stein estimator with respect to the prediction mean square error. 相似文献
20.
Akio Namba 《Journal of Statistical Computation and Simulation》2018,88(15):2893-2908
Consider a linear regression model with some relevant regressors are unobservable. In such a situation, we estimate the model by using the proxy variables as regressors or by simply omitting the relevant regressors. In this paper, we derive the explicit formula of predictive mean squared error (PMSE) of a general family of shrinkage estimators of regression coefficients. It is shown analytically that the positive-part shrinkage estimator dominates the ordinary shrinkage estimator even when proxy variables are used in place of the unobserved variables. Also, as an example, our result is applied to the double k-class estimator proposed by Ullah and Ullah (Double k-class estimators of coefficients in linear regression. Econometrica. 1978;46:705–722). Our numerical results show that the positive-part double k-class estimator with proxy variables has preferable PMSE performance. 相似文献