首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The binary logistic regression is a widely used statistical method when the dependent variable has two categories. In most of the situations of logistic regression, independent variables are collinear which is called the multicollinearity problem. It is known that multicollinearity affects the variance of maximum likelihood estimator (MLE) negatively. Therefore, this article introduces new shrinkage parameters for the Liu-type estimators in the Liu (2003) in the logistic regression model defined by Huang (2012) in order to decrease the variance and overcome the problem of multicollinearity. A Monte Carlo study is designed to show the goodness of the proposed estimators over MLE in the sense of mean squared error (MSE) and mean absolute error (MAE). Moreover, a real data case is given to demonstrate the advantages of the new shrinkage parameters.  相似文献   

2.
Poisson regression is a very commonly used technique for modeling the count data in applied sciences, in which the model parameters are usually estimated by the maximum likelihood method. However, the presence of multicollinearity inflates the variance of maximum likelihood (ML) estimator and the estimated parameters give unstable results. In this article, a new linearized ridge Poisson estimator is introduced to deal with the problem of multicollinearity. Based on the asymptotic properties of ML estimator, the bias, covariance and mean squared error of the proposed estimator are obtained and the optimal choice of shrinkage parameter is derived. The performance of the existing estimators and proposed estimator is evaluated through Monte Carlo simulations and two real data applications. The results clearly reveal that the proposed estimator outperforms the existing estimators in the mean squared error sense.KEYWORDS: Poisson regression, multicollinearity, ridge Poisson estimator, linearized ridge regression estimator, mean squared errorMathematics Subject Classifications: 62J07, 62F10  相似文献   

3.
The binary logistic regression is a commonly used statistical method when the outcome variable is dichotomous or binary. The explanatory variables are correlated in some situations of the logit model. This problem is called multicollinearity. It is known that the variance of the maximum likelihood estimator (MLE) is inflated in the presence of multicollinearity. Therefore, in this study, we define a new two-parameter ridge estimator for the logistic regression model to decrease the variance and overcome multicollinearity problem. We compare the new estimator to the other well-known estimators by studying their mean squared error (MSE) properties. Moreover, a Monte Carlo simulation is designed to evaluate the performances of the estimators. Finally, a real data application is illustrated to show the applicability of the new method. According to the results of the simulation and real application, the new estimator outperforms the other estimators for all of the situations considered.  相似文献   

4.
The Poisson regression model (PRM) is employed in modelling the relationship between a count variable (y) and one or more explanatory variables. The parameters of PRM are popularly estimated using the Poisson maximum likelihood estimator (PMLE). There is a tendency that the explanatory variables grow together, which results in the problem of multicollinearity. The variance of the PMLE becomes inflated in the presence of multicollinearity. The Poisson ridge regression (PRRE) and Liu estimator (PLE) have been suggested as an alternative to the PMLE. However, in this study, we propose a new estimator to estimate the regression coefficients for the PRM when multicollinearity is a challenge. We perform a simulation study under different specifications to assess the performance of the new estimator and the existing ones. The performance was evaluated using the scalar mean square error criterion and the mean squared error prediction error. The aircraft damage data was adopted for the application study and the estimators’ performance judged by the SMSE and the mean squared prediction error. The theoretical comparison shows that the proposed estimator outperforms other estimators. This is further supported by the simulation study and the application result.KEYWORDS: Poisson regression model, Poisson maximum likelihood estimator, multicollinearity, Poisson ridge regression, Liu estimator, simulation  相似文献   

5.
This article considers a class of estimators for the location and scale parameters in the location-scale model based on ‘synthetic data’ when the observations are randomly censored on the right. The asymptotic normality of the estimators is established using counting process and martingale techniques when the censoring distribution is known and unknown, respectively. In the case when the censoring distribution is known, we show that the asymptotic variances of this class of estimators depend on the data transformation and have a lower bound which is not achievable by this class of estimators. However, in the case that the censoring distribution is unknown and estimated by the Kaplan–Meier estimator, this class of estimators has the same asymptotic variance and attains the lower bound for variance for the case of known censoring distribution. This is different from censored regression analysis, where asymptotic variances depend on the data transformation. Our method has three valuable advantages over the method of maximum likelihood estimation. First, our estimators are available in a closed form and do not require an iterative algorithm. Second, simulation studies show that our estimators being moment-based are comparable to maximum likelihood estimators and outperform them when sample size is small and censoring rate is high. Third, our estimators are more robust to model misspecification than maximum likelihood estimators. Therefore, our method can serve as a competitive alternative to the method of maximum likelihood in estimation for location-scale models with censored data. A numerical example is presented to illustrate the proposed method.  相似文献   

6.
It is known that collinearity among the explanatory variables in generalized linear models (GLMs) inflates the variance of maximum likelihood estimators. To overcome multicollinearity in GLMs, ordinary ridge estimator and restricted estimator were proposed. In this study, a restricted ridge estimator is introduced by unifying the ordinary ridge estimator and the restricted estimator in GLMs and its mean squared error (MSE) properties are discussed. The MSE comparisons are done in the context of first-order approximated estimators. The results are illustrated by a numerical example and two simulation studies are conducted with Poisson and binomial responses.  相似文献   

7.
In the logistic regression model, the variance of the maximum likelihood estimator is inflated and unstable when the multicollinearity exists in the data. There are several methods available in literature to overcome this problem. We propose a new stochastic restricted biased estimator. We study the statistical properties of the proposed estimator and compare its performance with some existing estimators in the sense of scalar mean squared criterion. An example and a simulation study are provided to illustrate the performance of the proposed estimator.KEYWORDS: Logistic regression, maximum likelihood estimator, mean squared error matrix, ridge regression, simulation study, stochastic restricted estimatorMathematics Subject Classifications: Primary 62J05, Secondary 62J07  相似文献   

8.
The method of target estimation developed by Cabrera and Fernholz [(1999). Target estimation for bias and mean square error reduction. The Annals of Statistics, 27(3), 1080–1104.] to reduce bias and variance is applied to logistic regression models of several parameters. The expectation functions of the maximum likelihood estimators for the coefficients in the logistic regression models of one and two parameters are analyzed and simulations are given to show a reduction in both bias and variability after targeting the maximum likelihood estimators. In addition to bias and variance reduction, it is found that targeting can also correct the skewness of the original statistic. An example based on real data is given to show the advantage of using target estimators for obtaining better confidence intervals of the corresponding parameters. The notion of the target median is also presented with some applications to the logistic models.  相似文献   

9.
Summary A STAR model is characterized by autoregressive terms lagged both in time and space. The model we call GSTAR presents also contemporaneous spatial correlation. Under the hypothesis of stationarity we derive conditional maximum likelihood estimators of the autoregressive parameters and a consistent estimator of their covariance matrix.  相似文献   

10.
Necessary and sufficient conditions for the existence of maximum likelihood estimators of unknown parameters in linear models with equi‐correlated random errors are presented. The basic technique we use is that these models are, first, orthogonally transformed into linear models with two variances, and then the maximum likelihood estimation problem is solved in the environment of transformed models. Our results generalize a result of Arnold, S. F. (1981) [The theory of linear models and multivariate analysis. Wiley, New York]. In addition, we give necessary and sufficient conditions for the existence of restricted maximum likelihood estimators of the parameters. The results of Birkes, D. & Wulff, S. (2003) [Existence of maximum likelihood estimates in normal variance‐components models. J Statist Plann. Inference. 113 , 35–47] are compared with our results and differences are pointed out.  相似文献   

11.
This article is concerned with modifications of both maximum likelihood and moment estimators for parameters of the three-parameter Wei bull distribution. Modifications presented here are basically the same as those previously proposed by the authors (1980, 1981, 1982) in connection with the lognormal and the gamma distributions. Computer programs were prepared for the practical application of these estimators and an illustrative example is included. Results of a simulation study provide insight into the sampling behavior of the new estimators and include comparisons with the traditional moment and maximum likelihood estimators. For some combinations of parameter values, some of the modified estimators considered here enjoy advantages over both moment and maximum likelihood estimators with respect to bias, variance, and/or ease of calculation.  相似文献   

12.
A simulation study of the binomial-logit model with correlated random effects is carried out based on the generalized linear mixed model (GLMM) methodology. Simulated data with various numbers of regression parameters and different values of the variance component are considered. The performance of approximate maximum likelihood (ML) and residual maximum likelihood (REML) estimators is evaluated. For a range of true parameter values, we report the average biases of estimators, the standard error of the average bias and the standard error of estimates over the simulations. In general, in terms of bias, the two methods do not show significant differences in estimating regression parameters. The REML estimation method is slightly better in reducing the bias of variance component estimates.  相似文献   

13.
In this work we have determined the asymptotic distribution of the maximum likelihood estimators of the parameters β, λ, and δ for the right-truncated Dagum model. Some numerical comparisons show that, for each combination of the parameters and for each sample size, the variance of maximum likelihood estimators increases as the truncation point decreases, i.e., with the increase in the cut of the right tail of distribution.  相似文献   

14.
Gupta and Kundu (Statistics 43:621–643, 2009) recently introduced a new class of weighted exponential distribution. It is observed that the proposed weighted exponential distribution is very flexible and can be used quite effectively to analyze skewed data. In this paper we propose a new bivariate distribution with the weighted exponential marginals. Different properties of this new bivariate distribution have been investigated. This new family has three unknown parameters, and it is observed that the maximum likelihood estimators of the unknown parameters can be obtained by solving a one-dimensional optimization procedure. We obtain the asymptotic distribution of the maximum likelihood estimators. Small simulation experiments have been performed to see the behavior of the maximum likelihood estimators, and one data analysis has been presented for illustrative purposes. Finally we discuss the multivariate generalization of the proposed model.  相似文献   

15.
Non-constant variance across observations (heteroskedasticity) results in the maximum likelihood estimators of tobit and probit model parameters being inconsistent. Some of the available tests for constant variance across observations (homoskedasticity) are discussed and examined in a small Monte Carlo experiment.  相似文献   

16.
Censoring can be occurred in many statistical analyses in the framework of experimental design. In this study, we estimate the model parameters in one-way ANOVA under Type II censoring. We assume that the distribution of the error terms is Azzalini's skew normal. We use Tiku's modified maximum likelihood (MML) methodology which is a modified version of the well-known maximum likelihood (ML) in the estimation procedure. Unlike ML methodology, MML methodology is non-iterative and gives explicit estimators of the model parameters. We also propose new test statistics based on the proposed estimators. The performances of the proposed estimators and the test statistics based on them are compared with the corresponding normal theory results via Monte Carlo simulation study. A real life data is analysed to show the implementation of the methodology presented in this paper at the end of the study.  相似文献   

17.
This article derives explicit expressions for the asymptotic variances of the maximum likelihood and continuously-updated GMM estimators in models that may not satisfy the fundamental asset-pricing restrictions in population. The proposed misspecification-robust variance estimators allow the researcher to conduct valid inference on the model parameters even when the model is rejected by the data. While the results for the maximum likelihood estimator are only applicable to linear asset-pricing models, the asymptotic distribution of the continuously-updated GMM estimator is derived for general, possibly nonlinear, models. The large corrections in the asymptotic variances, that arise from explicitly incorporating model misspecification in the analysis, are illustrated using simulations and an empirical application.  相似文献   

18.
In one-way ANOVA, most of the pairwise multiple comparison procedures depend on normality assumption of errors. In practice, errors have non-normal distributions so frequently. Therefore, it is very important to develop robust estimators of location and the associated variance under non-normality. In this paper, we consider the estimation of one-way ANOVA model parameters to make pairwise multiple comparisons under short-tailed symmetric (STS) distribution. The classical least squares method is neither efficient nor robust and maximum likelihood estimation technique is problematic in this situation. Modified maximum likelihood (MML) estimation technique gives the opportunity to estimate model parameters in closed forms under non-normal distributions. Hence, the use of MML estimators in the test statistic is proposed for pairwise multiple comparisons under STS distribution. The efficiency and power comparisons of the test statistic based on sample mean, trimmed mean, wave and MML estimators are given and the robustness of the test obtained using these estimators under plausible alternatives and inlier model are examined. It is demonstrated that the test statistic based on MML estimators is efficient and robust and the corresponding test is more powerful and having smallest Type I error.  相似文献   

19.
Capture–recapture processes are biased samplings of recurrent event processes, which can be modelled by the Andersen–Gill intensity model. The intensity function is assumed to be a function of time, covariates and a parameter. We derive the maximum likelihood estimators of both the parameter and the population size and show the consistency and asymptotic normality of the estimators for both recapture and removal studies. The estimators are asymptotically efficient and their theoretical asymptotic relative efficiencies with respect to the existing estimators of Yip and co-workers can be as large as ∞. The variance estimation and a numerical example are also presented.  相似文献   

20.
A general procedure is developed for bias-correcting the maximum likelihood estimators (MLEs) of the parameters of Weibull regression model with either complete or right-censored data. Following the bias correction, variance corrections and hence improved t-ratios for model parameters are presented. Potentially improved t-ratios for other reliability-related quantities are also discussed. Simulation results show that the proposed method is effective in correcting the bias of the MLEs, and the resulted t-ratios generally improve over the regular t-ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号