首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The additive Cox model is flexible and powerful for modelling the dynamic changes of regression coefficients in the survival analysis. This paper is concerned with feature screening for the additive Cox model with ultrahigh-dimensional covariates. The proposed screening procedure can effectively identify active predictors. That is, with probability tending to one, the selected variable set includes the actual active predictors. In order to carry out the proposed procedure, we propose an effective algorithm and establish the ascent property of the proposed algorithm. We further prove that the proposed procedure possesses the sure screening property. Furthermore, we examine the finite sample performance of the proposed procedure via Monte Carlo simulations, and illustrate the proposed procedure by a real data example.  相似文献   

2.
In this paper, we consider sure independence feature screening for ultrahigh dimensional discriminant analysis. We propose a new method named robust rank screening based on the conditional expectation of the rank of predictor’s samples. We also establish the sure screening property for the proposed procedure under simple assumptions. The new procedure has some additional desirable characters. First, it is robust against heavy-tailed distributions, potential outliers and the sample shortage for some categories. Second, it is model-free without any specification of a regression model and directly applicable to the situation with many categories. Third, it is simple in theoretical derivation due to the boundedness of the resulting statistics. Forth, it is relatively inexpensive in computational cost because of the simple structure of the screening index. Monte Carlo simulations and real data examples are used to demonstrate the finite sample performance.  相似文献   

3.
Ultrahigh dimensional data with both categorical responses and categorical covariates are frequently encountered in the analysis of big data, for which feature screening has become an indispensable statistical tool. We propose a Pearson chi-square based feature screening procedure for categorical response with ultrahigh dimensional categorical covariates. The proposed procedure can be directly applied for detection of important interaction effects. We further show that the proposed procedure possesses screening consistency property in the terminology of Fan and Lv (2008). We investigate the finite sample performance of the proposed procedure by Monte Carlo simulation studies and illustrate the proposed method by two empirical datasets.  相似文献   

4.
This article is concerned with feature screening for the ultrahigh dimensional discriminant analysis. A variance ratio screening method is proposed and the sure screening property of this screening procedure is proved. The proposed method has some additional desirable features. First, it is model-free which does not require specific discriminant model and can be directly applied to the multi-categories situation. Second, it can effectively screen main effects and interaction effects simultaneously. Third, it is relatively inexpensive in computational cost because of the simple structure. The finite sample properties are performed through the Monte Carlo simulation studies and two real-data analyses.  相似文献   

5.
A variable screening procedure via correlation learning was proposed in Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS, a specific member of the sure independence screening. Several closely related variable screening procedures are proposed. Under general nonparametric models, it is shown that under some mild technical conditions, the proposed independence screening methods enjoy a sure screening property. The extent to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, a data-driven thresholding and an iterative nonparametric independence screening (INIS) are also proposed to enhance the finite sample performance for fitting sparse additive models. The simulation results and a real data analysis demonstrate that the proposed procedure works well with moderate sample size and large dimension and performs better than competing methods.  相似文献   

6.
It is quite a challenge to develop model‐free feature screening approaches for missing response problems because the existing standard missing data analysis methods cannot be applied directly to high dimensional case. This paper develops some novel methods by borrowing information of missingness indicators such that any feature screening procedures for ultrahigh‐dimensional covariates with full data can be applied to missing response case. The first method is the so‐called missing indicator imputation screening, which is developed by proving that the set of the active predictors of interest for the response is a subset of the active predictors for the product of the response and missingness indicator under some mild conditions. As an alternative, another method called Venn diagram‐based approach is also developed. The sure screening property is proven for both methods. It is shown that the complete case analysis can also keep the sure screening property of any feature screening approach with sure screening property.  相似文献   

7.
Most feature screening methods for ultrahigh-dimensional classification explicitly or implicitly assume the covariates are continuous. However, in the practice, it is quite common that both categorical and continuous covariates appear in the data, and applicable feature screening method is very limited. To handle this non-trivial situation, we propose an entropy-based feature screening method, which is model free and provides a unified screening procedure for both categorical and continuous covariates. We establish the sure screening and ranking consistency properties of the proposed procedure. We investigate the finite sample performance of the proposed procedure by simulation studies and illustrate the method by a real data analysis.  相似文献   

8.
Ultra-high dimensional data arise in many fields of modern science, such as medical science, economics, genomics and imaging processing, and pose unprecedented challenge for statistical analysis. With such rapid-growth size of scientific data in various disciplines, feature screening becomes a primary step to reduce the high dimensionality to a moderate scale that can be handled by the existing penalized methods. In this paper, we introduce a simple and robust feature screening method without any model assumption to tackle high dimensional censored data. The proposed method is model-free and hence applicable to a general class of survival models. The sure screening and ranking consistency properties without any finite moment condition of the predictors and the response are established. The computation of the proposed method is rather straightforward. Finite sample performance of the newly proposed method is examined via extensive simulation studies. An application is illustrated with the gene association study of the mantle cell lymphoma.  相似文献   

9.
For ultrahigh-dimensional data, independent feature screening has been demonstrated both theoretically and empirically to be an effective dimension reduction method with low computational demanding. Motivated by the Buckley–James method to accommodate censoring, we propose a fused Kolmogorov–Smirnov filter to screen out the irrelevant dependent variables for ultrahigh-dimensional survival data. The proposed model-free screening method can work with many types of covariates (e.g. continuous, discrete and categorical variables) and is shown to enjoy the sure independent screening property under mild regularity conditions without requiring any moment conditions on covariates. In particular, the proposed procedure can still be powerful when covariates are strongly dependent on each other. We further develop an iterative algorithm to enhance the performance of our method while dealing with the practical situations where some covariates may be marginally unrelated but jointly related to the response. We conduct extensive simulations to evaluate the finite-sample performance of the proposed method, showing that it has favourable exhibition over the existing typical methods. As an illustration, we apply the proposed method to the diffuse large-B-cell lymphoma study.  相似文献   

10.
We consider the problem of variable screening in ultra-high-dimensional generalized linear models (GLMs) of nonpolynomial orders. Since the popular SIS approach is extremely unstable in the presence of contamination and noise, we discuss a new robust screening procedure based on the minimum density power divergence estimator (MDPDE) of the marginal regression coefficients. Our proposed screening procedure performs well under pure and contaminated data scenarios. We provide a theoretical motivation for the use of marginal MDPDEs for variable screening from both population as well as sample aspects; in particular, we prove that the marginal MDPDEs are uniformly consistent leading to the sure screening property of our proposed algorithm. Finally, we propose an appropriate MDPDE-based extension for robust conditional screening in GLMs along with the derivation of its sure screening property. Our proposed methods are illustrated through extensive numerical studies along with an interesting real data application.  相似文献   

11.
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by applications in high-throughput genomic data analysis. In this paper, we propose a class of regularization methods, integrating both the penalized empirical likelihood and pseudoscore approaches, for variable selection and estimation in sparse and high-dimensional additive hazards regression models. When the number of covariates grows with the sample size, we establish asymptotic properties of the resulting estimator and the oracle property of the proposed method. It is shown that the proposed estimator is more efficient than that obtained from the non-concave penalized likelihood approach in the literature. Based on a penalized empirical likelihood ratio statistic, we further develop a nonparametric likelihood approach for testing the linear hypothesis of regression coefficients and constructing confidence regions consequently. Simulation studies are carried out to evaluate the performance of the proposed methodology and also two real data sets are analyzed.  相似文献   

12.
Variable screening for censored survival data is most challenging when both survival and censoring times are correlated with an ultrahigh-dimensional vector of covariates. Existing approaches to handling censoring often make use of inverse probability weighting by assuming independent censoring with both survival time and covariates. This is a convenient but rather restrictive assumption which may be unmet in real applications, especially when the censoring mechanism is complex and the number of covariates is large. To accommodate heterogeneous (covariate-dependent) censoring that is often present in high-dimensional survival data, we propose a Gehan-type rank screening method to select features that are relevant to the survival time. The method is invariant to monotone transformations of the response and of the predictors, and works robustly for a general class of survival models. We establish the sure screening property of the proposed methodology. Simulation studies and a lymphoma data analysis demonstrate its favorable performance and practical utility.  相似文献   

13.
This paper is concerned with the stable feature screening for the ultrahigh dimensional data. To deal with the ultrahigh dimensional data problem and screen the important features, a set-averaging measurement is proposed. The model averaging technique and the conditional quantile method are used to construct the weighted set-averaging feature screening procedure to identify the relationships between the possible predictors and the response variable. The proposed screening method is model free, stable and possesses the sure screening property under some regular conditions. Some Monte Carlo simulations and a real data application are conducted to evaluate the performance of the proposed procedure.  相似文献   

14.
With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in many scientific studies. In this article, we propose a novel feature screening procedure under a unified model framework, which covers a wide variety of commonly used parametric and semiparametric models. The new method does not require imposing a specific model structure on regression functions, and thus is particularly appealing to ultrahigh-dimensional regressions, where there are a huge number of candidate predictors but little information about the actual model forms. We demonstrate that, with the number of predictors growing at an exponential rate of the sample size, the proposed procedure possesses consistency in ranking, which is both useful in its own right and can lead to consistency in selection. The new procedure is computationally efficient and simple, and exhibits a competent empirical performance in our intensive simulations and real data analysis.  相似文献   

15.
Based on the theories of sliced inverse regression (SIR) and reproducing kernel Hilbert space (RKHS), a new approach RDSIR (RKHS-based Double SIR) to nonlinear dimension reduction for survival data is proposed. An isometric isomorphism is constructed based on the RKHS property, then the nonlinear function in the RKHS can be represented by the inner product of two elements that reside in the isomorphic feature space. Due to the censorship of survival data, double slicing is used to estimate the weight function to adjust for the censoring bias. The nonlinear sufficient dimension reduction (SDR) subspace is estimated by a generalized eigen-decomposition problem. The asymptotic property of the estimator is established based on the perturbation theory. Finally, the performance of RDSIR is illustrated on simulated and real data. The numerical results show that RDSIR is comparable with the linear SDR method. Most importantly, RDSIR can also effectively extract nonlinearity from survival data.  相似文献   

16.
Screening procedures play an important role in data analysis, especially in high-throughput biological studies where the datasets consist of more covariates than independent subjects. In this article, a Bayesian screening procedure is introduced for the binary response models with logit and probit links. In contrast to many screening rules based on marginal information involving one or a few covariates, the proposed Bayesian procedure simultaneously models all covariates and uses closed-form screening statistics. Specifically, we use the posterior means of the regression coefficients as screening statistics; by imposing a generalized g-prior on the regression coefficients, we derive the analytical form of their posterior means and compute the screening statistics without Markov chain Monte Carlo implementation. We evaluate the utility of the proposed Bayesian screening method using simulations and real data analysis. When the sample size is small, the simulation results suggest improved performance with comparable computational cost.  相似文献   

17.
Feature screening and variable selection are fundamental in analysis of ultrahigh-dimensional data, which are being collected in diverse scientific fields at relatively low cost. Distance correlation-based sure independence screening (DC-SIS) has been proposed to perform feature screening for ultrahigh-dimensional data. The DC-SIS possesses sure screening property and filters out unimportant predictors in a model-free manner. Like all independence screening methods, however, it fails to detect the truly important predictors which are marginally independent of the response variable due to correlations among predictors. When there are many irrelevant predictors which are highly correlated with some strongly active predictors, the independence screening may miss other active predictors with relatively weak marginal signals. To improve the performance of DC-SIS, we introduce an effective iterative procedure based on distance correlation to detect all truly important predictors and potentially interactions in both linear and nonlinear models. Thus, the proposed iterative method possesses the favourable model-free and robust properties. We further illustrate its excellent finite-sample performance through comprehensive simulation studies and an empirical analysis of the rat eye expression data set.  相似文献   

18.
As a useful supplement to mean regression, quantile regression is a completely distribution-free approach and is more robust to heavy-tailed random errors. In this paper, a variable selection procedure for quantile varying coefficient models is proposed by combining local polynomial smoothing with adaptive group LASSO. With an appropriate selection of tuning parameters by the BIC criterion, the theoretical properties of the new procedure, including consistency in variable selection and the oracle property in estimation, are established. The finite sample performance of the newly proposed method is investigated through simulation studies and the analysis of Boston house price data. Numerical studies confirm that the newly proposed procedure (QKLASSO) has both robustness and efficiency for varying coefficient models irrespective of error distribution, which is a good alternative and necessary supplement to the KLASSO method.  相似文献   

19.
In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods.  相似文献   

20.
Case‐cohort design has been demonstrated to be an economical and efficient approach in large cohort studies when the measurement of some covariates on all individuals is expensive. Various methods have been proposed for case‐cohort data when the dimension of covariates is smaller than sample size. However, limited work has been done for high‐dimensional case‐cohort data which are frequently collected in large epidemiological studies. In this paper, we propose a variable screening method for ultrahigh‐dimensional case‐cohort data under the framework of proportional model, which allows the covariate dimension increases with sample size at exponential rate. Our procedure enjoys the sure screening property and the ranking consistency under some mild regularity conditions. We further extend this method to an iterative version to handle the scenarios where some covariates are jointly important but are marginally unrelated or weakly correlated to the response. The finite sample performance of the proposed procedure is evaluated via both simulation studies and an application to a real data from the breast cancer study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号