首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Many researchers used auxiliary information together with survey variable to improve the efficiency of population parameters like mean, variance, total and proportion. Ratio and regression estimation are the most commonly used methods that utilized auxiliary information in different ways to get the maximum benefits in the form of high precision of the estimators. Thompson first introduced the concept of Adaptive cluster sampling, which is an appropriate technique for collecting the samples from rare and clustered populations. In this article, a generalized exponential type estimator is proposed and its properties have been studied for the estimation of rare and highly clustered population variance using single auxiliary information. A numerical study is carried out on a real and artificial population to judge the performance of the proposed estimator over the competing estimators. It is shown that the proposed generalized exponential type estimator is more efficient than the adaptive and non adaptive estimators under conventional sampling design.  相似文献   

2.
Adaptive cluster sampling is an efficient method of estimating the parameters of rare and clustered populations. The method mimics how biologists would like to collect data in the field by targeting survey effort to localised areas where the rare population occurs. Another popular sampling design is inverse sampling. Inverse sampling was developed so as to be able to obtain a sample of rare events having a predetermined size. Ideally, in inverse sampling, the resultant sample set will be sufficiently large to ensure reliable estimation of population parameters. In an effort to combine the good properties of these two designs, adaptive cluster sampling and inverse sampling, we introduce inverse adaptive cluster sampling with unequal selection probabilities. We develop an unbiased estimator of the population total that is applicable to data obtained from such designs. We also develop numerical approximations to this estimator. The efficiency of the estimators that we introduce is investigated through simulation studies based on two real populations: crabs in Al Khor, Qatar and arsenic pollution in Kurdistan, Iran. The simulation results show that our estimators are efficient.  相似文献   

3.
The use of robust measures helps to increase the precision of the estimators, especially for the estimation of extremely skewed distributions. In this article, a generalized ratio estimator is proposed by using some robust measures with single auxiliary variable under the adaptive cluster sampling (ACS) design. We have incorporated tri-mean (TM), mid-range (MR) and Hodges-Lehman (HL) of the auxiliary variable as robust measures together with some conventional measures. The expressions of bias and mean square error (MSE) of the proposed generalized ratio estimator are derived. Two types of numerical study have been conducted using artificial clustered population and real data application to examine the performance of the proposed estimator over the usual mean per unit estimator under simple random sampling (SRS). Related results of the simulation study show that the proposed estimators provide better estimation results on both real and artificial population over the competing estimators.  相似文献   

4.
In the present article, we propose the generalized ratio-type and generalized ratio-exponential-type estimators for population mean in adaptive cluster sampling (ACS) under modified Horvitz-Thompson estimator. The proposed estimators utilize the auxiliary information in combination of conventional measures (coefficient of skewness, coefficient of variation, correlation coefficient, covariance, coefficient of kurtosis) and robust measures (tri-mean, Hodges-Lehmann, mid-range) to increase the efficiency of the estimators. Properties of the proposed estimators are discussed using the first order of approximation. The simulation study is conducted to evaluate the performances of the estimators. The results reveal that the proposed estimators are more efficient than competing estimators for population mean in ACS under both modified Hansen-Hurwitz and Horvitz-Thompson estimators.  相似文献   

5.
Adaptive cluster sampling can be a useful design for surveying rare and clustered populations. Here we present a new development in adaptive cluster sampling where we use a two‐stage design and extend the complete allocation sampling method. In the proposed new design the primary sample units are selected and, depending on the value of a preset condition, the entire primary unit is surveyed, as in complete allocation sampling. In the next step, if a second condition is met, the surrounding primary sample units are selected. We review the efficiency of the proposed design for sampling the New Zealand Castle Hill buttercups and provide unbiased estimators for the population total and sampling variance.  相似文献   

6.
In this paper, an improved generalized difference-cum-ratio-type estimator for the finite population variance under two-phase sampling design is proposed. The expressions for bias and mean square error (MSE) are derived to first order of approximation. The proposed estimator is more efficient than the usual sample variance estimator, traditional ratio estimator, traditional regression estimator, chain ratio type and chain ratio-product-type estimators, and Jhajj and Walia (2011) estimator. Four datasets are also used to illustrate the performances of different estimators.  相似文献   

7.
The adaptive cluster sampling (ACS) is a suitable sampling design for rare and clustered populations. In environmental and ecological applications, biological populations are generally animals or plants with highly patchy spatial distribution. However, ACS would be a less efficient design when the study population is not rare with low aggregation since the final sample size could be easily out of control. In this paper, a new variant of ACS is proposed in order to improve the performance (in term of precision and cost) of ACS versus simple random sampling (SRS). The idea is to detect the optimal sample size by means of a data-driven stopping rule in order to determine when to stop the adaptive procedure. By introducing a stopping rule the theoretical basis of ACS are not respected and the behaviour of the ordinary estimators used in ACS is explored by using Monte Carlo simulations. Results show that the proposed variant of ACS allows to control the effective sample size and to prevent from excessive efficiency loss typical of ACS when the population is less clustered than anticipated. The proposed strategy may be recommended especially when no prior information about the population structure is available as it does not require a prior knowledge of the degree of rarity and clustering of the population of interest.  相似文献   

8.
We consider a variance estimation when a stratified single stage cluster sample is selected in the first phase and a stratified simple random element sample is selected in the second phase. We propose explicit formulas of (asymptotically), we propose explicit formulas of (asymptotically) unbiased variance estimators for the double expansion estimator and regression estimator. We perform a small simulation study to investigate the performance of the proposed variance estimators. In our simulation study, the proposed variance estimator showed better or comparable performance to the Jackknife variance estimator. We also extend the results to a two-phase sampling design in which a stratified pps with replacement cluster sample is selected in the first phase.  相似文献   

9.
Recognizing that the efficiency in relative risk estimation for the Cox proportional hazards model is largely constrained by the total number of cases, Prentice (1986) proposed the case-cohort design in which covariates are measured on all cases and on a random sample of the cohort. Subsequent to Prentice, other methods of estimation and sampling have been proposed for these designs. We formalize an approach to variance estimation suggested by Barlow (1994), and derive a robust variance estimator based on the influence function. We consider the applicability of the variance estimator to all the proposed case-cohort estimators, and derive the influence function when known sampling probabilities in the estimators are replaced by observed sampling fractions. We discuss the modifications required when cases are missing covariate information. The missingness may occur by chance, and be completely at random; or may occur as part of the sampling design, and depend upon other observed covariates. We provide an adaptation of S-plus code that allows estimating influence function variances in the presence of such missing covariates. Using examples from our current case-cohort studies on esophageal and gastric cancer, we illustrate how our results our useful in solving design and analytic issues that arise in practice.  相似文献   

10.
11.
We propose separate ratio estimators for population variance in stratified random sampling. We obtain mean square error equations and compare proposed estimators about efficiency with each other. By these comparisons, we find the conditions which make proposed estimators more efficient than others. It has been shown that proposed classes of estimators are more efficient than usual unbiased estimator. We find that separate ratio estimators are more efficient than combined ratio estimators for population variance. The theoretical results are supported by a numerical illustration with original data. A simulation study is also carried out to investigate empirical performance of estimators.  相似文献   

12.
Summary.  The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs. We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.  相似文献   

13.
容越彦  陈光慧 《统计研究》2015,32(12):88-94
在总结现有模型辅助估计方法的基础上,本文通过构造一种半参数超总体模型,同时结合广义差分估计思想提出一种新型的模型辅助估计量。该估计量比传统的非参数和半参数回归估计利用更少、更易得到的辅助信息,即只需利用和广义回归估计相同的辅助信息,但一般会比广义回归估计拥有更高的估计精度。理论证明了该估计量是渐近设计无偏和设计一致的,其渐近设计均方误差为广义差分估计量的方差。模拟结果显示:其至少与广义回归估计一样好;对于线性程度越低的超总体模型,其估计精度比广义回归估计有越明显的提高;就本文模拟而言,光滑参数在0.04~0.12间适当取值时其会取到相对较好的估计效果。  相似文献   

14.
In recent years, calibration estimation has become an important field of research in survey sampling. This paper proposes a new calibration estimator for the population mean in the presence of two auxiliary variables in stratified sampling. The theory of new calibration estimator is given and optimum calibration weights are derived. A simulation study is carried out to performance of the proposed calibration estimator over other existing calibration estimators. The results reveal that the proposed calibration estimators are more efficient than other existing calibration estimators in stratified sampling.  相似文献   

15.
This paper develops the theory of calibration estimation and proposes calibration approach alternative to existing calibration estimators for estimating population mean of the study variable using auxiliary variable in stratified sampling. The theory of new calibration estimation is given and optimum weights are derived. A simulation study is carried out to performance of the proposed calibration estimator with other existing calibration estimators. The results reveal that the proposed calibration estimators are more efficient than Tracy et al., Singh et al., Singh calibration estimators of the population mean.  相似文献   

16.
Abstract

In this article, we have considered the problem of estimation of population variance on current (second) occasion in two occasion successive (rotation) sampling. A class of estimators of population variance has been proposed and its asymptotic properties have been discussed. The proposed class of estimators is compared with the sample variance estimator when there is no matching from the previous occasion and the Singh et al. (2013) estimator. Optimum replacement policy is discussed. It has been shown that the suggested estimator is more efficient than the Singh et al. (2013) estimator and a usual unbiased estimator when there is no matching. An empirical study is carried out in support of the present study.  相似文献   

17.
ABSTRACT

In this paper, a general class of estimators for estimating the finite population variance in successive sampling on two occasions using multi-auxiliary variables has been proposed. The expression of variance has also been derived. Further, it has been shown that the proposed general class of estimators is more efficient than the usual variance estimator and the class of variance estimators proposed by Singh et al. (2011) when we used more than one auxiliary variable. In addition, we support this with the aid of numerical illustration.  相似文献   

18.
Not having a variance estimator is a seriously weak point of a sampling design from a practical perspective. This paper provides unbiased variance estimators for several sampling designs based on inverse sampling, both with and without an adaptive component. It proposes a new design, which is called the general inverse sampling design, that avoids sampling an infeasibly large number of units. The paper provide estimators for this design as well as its adaptive modification. A simple artificial example is used to demonstrate the computations. The adaptive and non‐adaptive designs are compared using simulations based on real data sets. The results indicate that, for appropriate populations, the adaptive version can have a substantial variance reduction compared with the non‐adaptive version. Also, adaptive general inverse sampling with a limitation on the initial sample size has a greater variance reduction than without the limitation.  相似文献   

19.
Recently, Shabbir and Gupta [Shabbir, J. and Gupta, S. (2011). On estimating finite population mean in simple and stratified random sampling. Communications in Statistics-Theory and Methods, 40(2), 199–212] defined a class of ratio type exponential estimators of population mean under a very specific linear transformation of auxiliary variable. In the present article, we propose a generalized class of ratio type exponential estimators of population mean in simple random sampling under a very general linear transformation of auxiliary variable. Shabbir and Gupta's [Shabbir, J. and Gupta, S. (2011). On estimating finite population mean in simple and stratified random sampling. Communications in Statistics-Theory and Methods, 40(2), 199–212] class of estimators is a particular member of our proposed class of estimators. It has been found that the optimal estimator of our proposed generalized class of estimators is always more efficient than almost all the existing estimators defined under the same situations. Moreover, in comparison to a few existing estimators, our proposed estimator becomes more efficient under some simple conditions. Theoretical results obtained in the article have been verified by taking a numerical illustration. Finally, a simulation study has been carried out to see the relative performance of our proposed estimator with respect to some existing estimators which are less efficient under certain conditions as compared to the proposed estimator.  相似文献   

20.
Unbiased estimators for restricted adaptive cluster sampling   总被引:2,自引:0,他引:2  
In adaptive cluster sampling the size of the final sample is random, thus creating design problems. To get round this, Brown (1994) and Brown & Manly (1998) proposed a modification of the method, placing a restriction on the size of the sample, and using standard but biased estimators for estimating the population mean. But in this paper a new unbiased estimator and an unbiased variance estimator are proposed, based on estimators proposed by Murthy (1957) and extended to sequential and adaptive sampling designs by Salehi & Seber (2001). The paper also considers a restricted version of the adaptive scheme of Salehi & Seber (1997a) in which the networks are selected without replacement, and obtains unbiased estimators. The method is demonstrated by a simple example. Using simulation from this example, the new estimators are shown to compare very favourably with the standard biased estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号