首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantile regression (QR) is a natural alternative for depicting the impact of covariates on the conditional distributions of a outcome variable instead of the mean. In this paper, we investigate Bayesian regularized QR for the linear models with autoregressive errors. LASSO-penalized type priors are forced on regression coefficients and autoregressive parameters of the model. Gibbs sampler algorithm is employed to draw the full posterior distributions of unknown parameters. Finally, the proposed procedures are illustrated by some simulation studies and applied to a real data analysis of the electricity consumption.  相似文献   

2.
The paper proposes a Bayesian quantile regression method for hierarchical linear models. Existing approaches of hierarchical linear quantile regression models are scarce and most of them were not from the perspective of Bayesian thoughts, which is important for hierarchical models. In this paper, based on Bayesian theories and Markov Chain Monte Carlo methods, we introduce Asymmetric Laplace distributed errors to simulate joint posterior distributions of population parameters and across-unit parameters and then derive their posterior quantile inferences. We run a simulation as the proposed method to examine the effects on parameters induced by units and quantile levels; the method is also applied to study the relationship between Chinese rural residents' family annual income and their cultivated areas. Both the simulation and real data analysis indicate that the method is effective and accurate.  相似文献   

3.
4.
In this article, we develop a Bayesian analysis in autoregressive model with explanatory variables. When σ2 is known, we consider a normal prior and give the Bayesian estimator for the regression coefficients of the model. For the case σ2 is unknown, another Bayesian estimator is given for all unknown parameters under a conjugate prior. Bayesian model selection problem is also being considered under the double-exponential priors. By the convergence of ρ-mixing sequence, the consistency and asymptotic normality of the Bayesian estimators of the regression coefficients are proved. Simulation results indicate that our Bayesian estimators are not strongly dependent on the priors, and are robust.  相似文献   

5.
Partial linear single-index model (PLSIM) has both the flexibility of nonparametric treatment and interpretability of linear term, yet existing literatures about it mainly focused on mean regression, and quantile regression analysis is scarce. Based on free knot spline approximation, we apply asymmetric Laplace distribution to implement Bayesian quantile regression, and perform variable selection in linear term and index vector via binary indicators. Our approach is exempt from regularity conditions in frequentist method, and could execute variable selection and quantile regression under mutual posterior correction, which is also the first work to implement them jointly for PLSIM in fully Bayesian framework. The numerical simulation manifests the superiority of our approach to previous methods, which embodied in better efficiency of variable selection, index vector estimates and link function approximation with different error distributions. For illustration of its application, we build a power consumption model of A2/O process in wastewater treatment and emphatically analyze the impact of water quality factors.  相似文献   

6.
Linear regression models are useful statistical tools to analyze data sets in different fields. There are several methods to estimate the parameters of a linear regression model. These methods usually perform under normally distributed and uncorrelated errors. If error terms are correlated the Conditional Maximum Likelihood (CML) estimation method under normality assumption is often used to estimate the parameters of interest. The CML estimation method is required a distributional assumption on error terms. However, in practice, such distributional assumptions on error terms may not be plausible. In this paper, we propose to estimate the parameters of a linear regression model with autoregressive error term using Empirical Likelihood (EL) method, which is a distribution free estimation method. A small simulation study is provided to evaluate the performance of the proposed estimation method over the CML method. The results of the simulation study show that the proposed estimators based on EL method are remarkably better than the estimators obtained from CML method in terms of mean squared errors (MSE) and bias in almost all the simulation configurations. These findings are also confirmed by the results of the numerical and real data examples.  相似文献   

7.
We propose a new iterative algorithm, called model walking algorithm, to the Bayesian model averaging method on the longitudinal regression models with AR(1) random errors within subjects. The Markov chain Monte Carlo method together with the model walking algorithm are employed. The proposed method is successfully applied to predict the progression rates on a myopia intervention trial in children.  相似文献   

8.
We develop Bayesian procedures to make inference about parameters of a statistical design with autocorrelated error terms. Modelling treatment effects can be complex in the presence of other factors such as time; for example in longitudinal data. In this paper, Markov chain Monte Carlo methods (MCMC), the Metropolis-Hastings algorithm and Gibbs sampler are used to facilitate the Bayesian analysis of real life data when the error structure can be expressed as an autoregressive model of order p. We illustrate our analysis with real data.  相似文献   

9.
This article deals with model comparison as an essential part of generalized linear modelling in the presence of covariates missing not at random (MNAR). We provide an evaluation of the performances of some of the popular model selection criteria, particularly of deviance information criterion (DIC) and weighted L (WL) measure, for comparison among a set of candidate MNAR models. In addition, we seek to provide deviance and quadratic loss-based model selection criteria with alternative penalty terms targeting directly the MNAR models. This work is motivated by the need in the literature to understand the performances of these important model selection criteria for comparison among a set of MNAR models. A Monte Carlo simulation experiment is designed to assess the finite sample performances of these model selection criteria in the context of interest under different scenarios for missingness amounts. Some naturally driven DIC and WL extensions are also discussed and evaluated.  相似文献   

10.
ABSTRACT

Nowadays, generalized linear models have many applications. Some of these models which have more applications in the real world are the models with random effects; that is, some of the unknown parameters are considered random variables. In this article, this situation is considered in logistic regression models with a random intercept having exponential distribution. The aim is to obtain the Bayesian D-optimal design; thus, the method is to maximize the Bayesian D-optimal criterion. For the model was considered here, this criterion is a function of the quasi-information matrix that depends on the unknown parameters of the model. In the Bayesian D-optimal criterion, the expectation is acquired in respect of the prior distributions that are considered for the unknown parameters. Thus, it will only be a function of experimental settings (support points) and their weights. The prior distribution of the fixed parameters is considered uniform and normal. The Bayesian D-optimal design is finally calculated numerically by R3.1.1 software.  相似文献   

11.
In this article, we investigate a new estimation approach for the partially linear single-index model based on modal regression method, where the non parametric function is estimated by penalized spline method. Moreover, we develop an expection maximum (EM)-type algorithm and establish the large sample properties of the proposed estimation method. A distinguishing characteristic of the newly proposed estimation is robust against outliers through introducing an additional tuning parameter which can be automatically selected using the observed data. Simulation studies and real data example are used to evaluate the finite-sample performance, and the results show that the newly proposed method works very well.  相似文献   

12.
According to investigated topic in the context of optimal designs, various methods can be used to obtain optimal design, of which Bayesian method is one. In this paper, considering the model and the features of the information matrix, this method (Bayesian optimality criterion) has been used for obtaining optimal designs which due to the variation range of the model parameters, prior distributions such as Uniform, Normal and Exponential have been used and the results analysed.  相似文献   

13.
Count data with excess zeros are widely encountered in the fields of biomedical, medical, public health and social survey, etc. Zero-inflated Poisson (ZIP) regression models with mixed effects are useful tools for analyzing such data, in which covariates are usually incorporated in the model to explain inter-subject variation and normal distribution is assumed for both random effects and random errors. However, in many practical applications, such assumptions may be violated as the data often exhibit skewness and some covariates may be measured with measurement errors. In this paper, we deal with these issues simultaneously by developing a Bayesian joint hierarchical modeling approach. Specifically, by treating intercepts and slopes in logistic and Poisson regression as random, a flexible two-level ZIP regression model is proposed, where a covariate process with measurement errors is established and a skew-t-distribution is considered for both random errors and random effects. Under the Bayesian framework, model selection is carried out using deviance information criterion (DIC) and a goodness-of-fit statistics is also developed for assessing the plausibility of the posited model. The main advantage of our method is that it allows for more robustness and correctness for investigating heterogeneity from different levels, while accommodating the skewness and measurement errors simultaneously. An application to Shanghai Youth Fitness Survey is used as an illustrate example. Through this real example, it is showed that our approach is of interest and usefulness for applications.  相似文献   

14.
This paper presents a Bayesian solution to the problem of time series forecasting, for the case in which the generating process is an autoregressive of order one, with a normal random coefficient. The proposed procedure is based on the predictive density of the future observation. Conjugate priors are used for some parameters, while improper vague priors are used for others.  相似文献   

15.
In this article, we apply the Bayesian approach to the linear mixed effect models with autoregressive(p) random errors under mixture priors obtained with the Markov chain Monte Carlo (MCMC) method. The mixture structure of a point mass and continuous distribution can help to select the variables in fixed and random effects models from the posterior sample generated using the MCMC method. Bayesian prediction of future observations is also one of the major concerns. To get the best model, we consider the commonly used highest posterior probability model and the median posterior probability model. As a result, both criteria tend to be needed to choose the best model from the entire simulation study. In terms of predictive accuracy, a real example confirms that the proposed method provides accurate results.  相似文献   

16.
In this paper, we propose a method based on wavelet analysis to detect and estimate jump points in non parametric regression function. This method is applied to AR(1) noise process under random design. First, the test statistics are constructed on the empirical wavelet coefficients. Then, under the null hypothesis, the critical values of test statistics are obtained. Under the alternative, the consistency of the test is proved. Afterward, the rate of convergence, the estimators of the number, and locations of change points are given theoretically. Finally, the excellent performance of our method is demonstrated through simulations using artificial and real datasets.  相似文献   

17.
Patients with different characteristics (e.g., biomarkers, risk factors) may have different responses to the same medicine. Personalized medicine clinical studies that are designed to identify patient subgroup treatment efficacies can benefit patients and save medical resources. However, subgroup treatment effect identification complicates the study design in consideration of desired operating characteristics. We investigate three Bayesian adaptive models for subgroup treatment effect identification: pairwise independent, hierarchical, and cluster hierarchical achieved via Dirichlet Process (DP). The impact of interim analysis and longitudinal data modeling on the personalized medicine study design is also explored. Interim analysis is considered since they can accelerate personalized medicine studies in cases where early stopping rules for success or futility are met. We apply integrated two-component prediction method (ITP) for longitudinal data simulation, and simple linear regression for longitudinal data imputation to optimize the study design. The designs' performance in terms of power for the subgroup treatment effects and overall treatment effect, sample size, and study duration are investigated via simulation. We found the hierarchical model is an optimal approach to identifying subgroup treatment effects, and the cluster hierarchical model is an excellent alternative approach in cases where sufficient information is not available for specifying the priors. The interim analysis introduction to the study design lead to the trade-off between power and expected sample size via the adjustment of the early stopping criteria. The introduction of the longitudinal modeling slightly improves the power. These findings can be applied to future personalized medicine studies with discrete or time-to-event endpoints.  相似文献   

18.
This paper compares least squares (LS)/maximum likelihood (ML) and generalised method of moments (GMM) estimation in a simple. Gaussian autoregressive of order one (AR(1)) model. First, we show that the usual LS/ML estimator is a corner solution to a general minimisation problem that involves two moment conditions, while the new GMM we devise is not. Secondly, we examine asymptotic and finite sample properties of the new GMM estimator in comparison to the usual LS/ML estimator in a simple AR(1) model. For both stable and unstable (unit root) specifications, we show asymptotic equivalence of the distributions of the two estimators. However, in finite samples, the new GMM estimator performs better.  相似文献   

19.
The purpose of this paper is to develop a Bayesian approach for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes and presence of randomized activation mechanisms. We assume the number of competing causes of the event of interest follows a Negative Binomial (NB) distribution while the latent lifetimes are assumed to follow a Weibull distribution. Markov chain Monte Carlos (MCMC) methods are used to develop the Bayesian procedure. Model selection to compare the fitted models is discussed. Moreover, we develop case deletion influence diagnostics for the joint posterior distribution based on the ψ-divergence, which has several divergence measures as particular cases. The developed procedures are illustrated with a real data set.  相似文献   

20.
The main aim of this paper is to perform sensitivity analysis to the specification of prior distributions in a Bayesian analysis setting of STAR models. To achieve this aim, the joint posterior distribution of model order, coefficient, and implicit parameters in the logistic STAR model is first being presented. The conditional posterior distributions are then shown, followed by the design of a posterior simulator using a combination of Metropolis-Hastings, Gibbs Sampler, RJMCMC, and Multiple Try Metropolis algorithms, respectively. Following this, simulation studies and a case study on the prior sensitivity for the implicit parameters are being detailed at the end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号