首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The robust estimation and the local influence analysis for linear regression models with scale mixtures of multivariate skew-normal distributions have been developed in this article. The main virtue of considering the linear regression model under the class of scale mixtures of skew-normal distributions is that they have a nice hierarchical representation which allows an easy implementation of inference. Inspired by the expectation maximization algorithm, we have developed a local influence analysis based on the conditional expectation of the complete-data log-likelihood function, which is a measurement invariant under reparametrizations. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and with Cook's well-known approach it can be very difficult to obtain measures of the local influence. Some useful perturbation schemes are discussed. In order to examine the robust aspect of this flexible class against outlying and influential observations, some simulation studies have also been presented. Finally, a real data set has been analyzed, illustrating the usefulness of the proposed methodology.  相似文献   

2.
The conditional tail expectation (CTE) is an indicator of tail behavior that takes into account both the frequency and magnitude of a tail event. However, the asymptotic normality of its empirical estimator requires that the underlying distribution possess a finite variance; this can be a strong restriction in actuarial and financial applications. A valuable alternative is the median shortfall (MS), although it only gives information about the frequency of a tail event. We construct a class of tail Lp-medians encompassing the MS and CTE. For p in (1,2), a tail Lp-median depends on both the frequency and magnitude of tail events, and its empirical estimator is, within the range of the data, asymptotically normal under a condition weaker than a finite variance. We extrapolate this estimator and another technique to extreme levels using the heavy-tailed framework. The estimators are showcased on a simulation study and on real fire insurance data.  相似文献   

3.
We obtain the first four moments of scale mixtures of skew-normal distributions allowing for scale parameters. The first two moments of their quadratic forms are obtained using those moments. Previous studies derived the moments, but all relevant results do not allow for scale parameters. In particular, it is shown that the mean squared error becomes an unbiased estimator of σ2 with skewed and heavy-tailed errors. Two measures of multivariate skewness are calculated.  相似文献   

4.
In many studies, the data collected are subject to some upper and lower detection limits. Hence, the responses are either left or right censored. A complication arises when these continuous measures present heavy tails and asymmetrical behavior; simultaneously. For such data structures, we propose a robust-censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows us to estimate the parameters of interest easily and quickly, obtaining as a byproducts the standard errors, predictions of unobservable values of the response and the log-likelihood function. The proposed methods are illustrated through real data applications and several simulation studies.  相似文献   

5.
The purpose of this paper is to develop diagnostics analysis for nonlinear regression models (NLMs) under scale mixtures of skew-normal (SMSN) distributions introduced by Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115–124]. This novel class of models provides a useful generalization of the symmetrical NLM [Vanegas LH, Cysneiros FJA. Assessment of diagnostic procedures in symmetrical nonlinear regression models. Comput. Statist. Data Anal. 2010;54:1002–1016] since the random terms distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as the skew-t, skew-slash, skew-contaminated normal distributions, among others. Motivated by the results given in Garay et al. [Nonlinear regression models based on SMSN distributions. J. Korean Statist. Soc. 2011;40:115–124], we presented a score test for testing the homogeneity of the scale parameter and its properties are investigated through Monte Carlo simulations studies. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. The newly developed procedures are illustrated considering a real data set.  相似文献   

6.
7.
Debasis Kundu 《Statistics》2017,51(6):1377-1397
Azzalini [A class of distributions which include the normal. Scand J Stat. 1985;12:171–178] introduced a skew-normal distribution of which normal distribution is a special case. Recently, Kundu [Geometric skew normal distribution. Sankhya Ser B. 2014;76:167–189] introduced a geometric skew-normal distribution and showed that it has certain advantages over Azzalini's skew-normal distribution. In this paper we discuss about the multivariate geometric skew-normal (MGSN) distribution. It can be used as an alternative to Azzalini's skew-normal distribution. We discuss different properties of the proposed distribution. It is observed that the joint probability density function of the MGSN distribution can take a variety of shapes. Several characterization results have been established. Generation from an MGSN distribution is quite simple, hence the simulation experiments can be performed quite easily. The maximum likelihood estimators of the unknown parameters can be obtained quite conveniently using the expectation–maximization (EM) algorithm. We perform some simulation experiments and it is observed that the performances of the proposed EM algorithm are quite satisfactory. Furthermore, the analyses of two data sets have been performed, and it is observed that the proposed methods and the model work very well.  相似文献   

8.
Aiming to avoid the sensitivity in the parameters estimation due to atypical observations or skewness, we develop asymmetric nonlinear regression models with mixed-effects, which provide alternatives to the use of normal distribution and other symmetric distributions. Nonlinear models with mixed-effects are explored in several areas of knowledge, especially when data are correlated, such as longitudinal data, repeated measures and multilevel data, in particular, for their flexibility in dealing with measures of areas such as economics and pharmacokinetics. The random components of the present model are assumed to follow distributions that belong to scale mixtures of skew-normal (SMSN) distribution family, that encompasses distributions with light and heavy tails, such as skew-normal, skew-Student-t, skew-contaminated normal and skew-slash, as well as symmetrical versions of these distributions. For the parameters estimation we obtain a numerical solution via the EM algorithm and its extensions, and the Newton-Raphson algorithm. An application with pharmacokinetic data shows the superiority of the proposed models, for which the skew-contaminated normal distribution has shown to be the most adequate distribution. A brief simulation study points to good properties of the parameter vector estimators obtained by the maximum likelihood method.  相似文献   

9.
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the data set under consideration involves asymmetric outcomes. Variable selection is an important issue in all regression analyses, and in this paper, we investigate the simultaneously variable selection in joint location and scale models of the skew-normal distribution. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies.  相似文献   

10.
In this work, we develop some diagnostics for nonlinear regression model with scale mixtures of skew-normal (SMSN) and first-order autoregressive errors. The SMSN distribution class covers symmetric as well as asymmetric and heavy-tailed distributions, which offers a more flexible framework for modelling. Maximum-likelihood (ML) estimates are computed via an expectation–maximization-type algorithm. Local influence diagnostics and score test for the correlation are also derived. The performances of the ML estimates and the test statistic are investigated through Monte Carlo simulations. Finally, a real data set is used to illustrate our diagnostic methods.  相似文献   

11.
Following the paper by Genton and Loperfido [Generalized skew-elliptical distributions and their quadratic forms, Ann. Inst. Statist. Math. 57 (2005), pp. 389–401], we say that Z has a generalized skew-normal distribution, if its probability density function (p.d.f.) is given by f(z)=2φ p (z; ξ, Ω)π (z?ξ), z∈? p , where φ p (·; ξ, Ω) is the p-dimensional normal p.d.f. with location vector ξ and scale matrix Ω, ξ∈? p , Ω>0, and π is a skewing function from ? p to ?, that is 0≤π (z)≤1 and π (?z)=1?π (z), ? z∈? p . First the distribution of linear transformations of Z are studied, and some moments of Z and its quadratic forms are derived. Next we obtain the joint moment-generating functions (m.g.f.’s) of linear and quadratic forms of Z and then investigate conditions for their independence. Finally explicit forms for the above distributions, m.g.f.’s and moments are derived when π (z)=κ (αz), where α∈? p and κ is the normal, Laplace, logistic or uniform distribution function.  相似文献   

12.
In this paper, asymptotic normality is established for the parameters of the multivariate skew-normal distribution under two parametrizations. Also, an analytic expression and an asymptotic normal law are derived for the skewness vector of the skew-normal distribution. The estimates are derived using the method of moments. Convergence to the asymptotic distributions is examined both computationally and in a simulation experiment.  相似文献   

13.
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model.  相似文献   

14.
Graphical models for skew-normal variates   总被引:2,自引:0,他引:2  
This paper explores the usefulness of the multivariate skew-normal distribution in the context of graphical models. A slight extension of the family recently discussed by Azzalini & Dalla Valle (1996 ) and Azzalini & Capitanio (1999 ) is described, the main motivation being the additional property of closure under conditioning. After considerations of the main probabilistic features, the focus of the paper is on the construction of conditional independence graphs for skew-normal variables. Necessary and sufficient conditions for conditional independence are stated, and the admissible structures of a graph under restriction on univariate marginal distribution are studied. Finally, parameter estimation is considered. It is shown how the factorization of the likelihood function according to a graph can be rearranged in order to obtain a parameter based factorization.  相似文献   

15.
Abstract

This paper studies decision theoretic properties of Stein type shrinkage estimators in simultaneous estimation of location parameters in a multivariate skew-normal distribution with known skewness parameters under a quadratic loss. The benchmark estimator is the best location equivariant estimator which is minimax. A class of shrinkage estimators improving on the best location equivariant estimator is constructed when the dimension of the location parameters is larger than or equal to four. An empirical Bayes estimator is also derived, and motivated from the Bayesian procedure, we suggest a simple skew-adjusted shrinkage estimator and show its dominance property. The performances of these estimators are investigated by simulation.  相似文献   

16.
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the dataset under consideration involves asymmetric outcomes. In this article, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis for joint location and scale nonlinear models with skew-normal errors, which relax the normality assumption and include the normal one as a special case. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of MCMC methods to simulate samples from the joint posterior distribution. Finally, simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

17.
The joint distribution of (X,Y) is determined if the conditional expectation E {g(X)|Y = y} is given and the conditional distribution of Y|(X = x) is a conditional power series distribution, where g(·) is a function satisfying some minor conditions.  相似文献   

18.
19.
We present a new class of models to fit longitudinal data, obtained with a suitable modification of the classical linear mixed-effects model. For each sample unit, the joint distribution of the random effect and the random error is a finite mixture of scale mixtures of multivariate skew-normal distributions. This extension allows us to model the data in a more flexible way, taking into account skewness, multimodality and discrepant observations at the same time. The scale mixtures of skew-normal form an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal, skew-Student-t, skew-slash and the skew-contaminated normal distributions as special cases, being a flexible alternative to the use of the corresponding symmetric distributions in this type of models. A simple efficient MCMC Gibbs-type algorithm for posterior Bayesian inference is employed. In order to illustrate the usefulness of the proposed methodology, two artificial and two real data sets are analyzed.  相似文献   

20.
The wrapped skew-normal distribution is proposed as a model for circular data. Basic results for the distribution are established and estimation for a circular parametrisation of it considered. Procedures based on the sample second central sine moment for testing for departures from three important limiting cases of the distribution are described. The model and some new inferential techniques are applied to directional data from a study into bird migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号