首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Marginal hazard models for multivariate failure time data have been studied extensively in recent literature. However, standard hypothesis test statistics based on the likelihood method are not exactly appropriate for this kind of model. In this paper, extensions of the three commonly used likelihood hypothesis test statistics are discussed. Generalized Wald, generalized score and generalized likelihood ratio tests for hazard ratio parameters in a marginal hazard model for multivariate failure time data are proposed and their asymptotic distributions examined. The finite sample properties of these statistics are studied through simulations. The proposed method is applied to data from Busselton Population Health Surveys.  相似文献   

2.
Two-parameter Gompertz distribution has been introduced as a lifetime model for reliability inference recently. In this paper, the Gompertz distribution is proposed for the baseline lifetimes of components in a composite system. In this composite system, failure of a component induces increased load on the surviving components and thus increases component hazard rate via a power-trend process. Point estimates of the composite system parameters are obtained by the method of maximum likelihood. Interval estimates of the baseline survival function are obtained by using the maximum-likelihood estimator via a bootstrap percentile method. Two parametric bootstrap procedures are proposed to test whether the hazard rate function changes with the number of failed components. Intensive simulations are carried out to evaluate the performance of the proposed estimation procedure.  相似文献   

3.
When describing a failure time distribution, the mean residual life is sometimes preferred to the survival or hazard rate. Regression analysis making use of the mean residual life function has recently drawn a great deal of attention. In this paper, a class of mean residual life regression models are proposed for censored data, and estimation procedures and a goodness-of-fit test are developed. Both asymptotic and finite sample properties of the proposed estimators are established, and the proposed methods are applied to a cancer data set from a clinic trial.  相似文献   

4.
The National Cancer Institute (NCI) suggests a sudden reduction in prostate cancer mortality rates, likely due to highly successful treatments and screening methods for early diagnosis. We are interested in understanding the impact of medical breakthroughs, treatments, or interventions, on the survival experience for a population. For this purpose, estimating the underlying hazard function, with possible time change points, would be of substantial interest, as it will provide a general picture of the survival trend and when this trend is disrupted. Increasing attention has been given to testing the assumption of a constant failure rate against a failure rate that changes at a single point in time. We expand the set of alternatives to allow for the consideration of multiple change-points, and propose a model selection algorithm using sequential testing for the piecewise constant hazard model. These methods are data driven and allow us to estimate not only the number of change points in the hazard function but where those changes occur. Such an analysis allows for better understanding of how changing medical practice affects the survival experience for a patient population. We test for change points in prostate cancer mortality rates using the NCI Surveillance, Epidemiology, and End Results dataset.  相似文献   

5.
The problem of reconstruction of the past failure times in the left-censored set-up is considered. Various reconstructors of time to failure of units censored in a left-censored sample from the proportional reversed hazard rate models are demonstrated. The maximum-likelihood, best unbiased and conditional median reconstructors are obtained. We also present two methods, non-Bayesian and Bayesian, for obtaining reconstruction intervals for the past failure times. Numerical example and a Monte Carlo simulation study are given to illustrate all the reconstruction methods discussed in this paper.  相似文献   

6.
The hazard function plays an important role in survival analysis and reliability, since it quantifies the instantaneous failure rate of an individual at a given time point t, given that this individual has not failed before t. In some applications, abrupt changes in the hazard function are observed, and it is of interest to detect the location of such a change. In this paper, we consider testing of existence of a change in the parameters of an exponential regression model, based on a sample of right-censored survival times and the corresponding covariates. Likelihood ratio type tests are proposed and non-asymptotic bounds for the type II error probability are obtained. When the tests lead to acceptance of a change, estimators for the location of the change are proposed. Non-asymptotic upper bounds of the underestimation and overestimation probabilities are obtained. A short simulation study illustrates these results.  相似文献   

7.
Summary.  The analysis of covariance is a technique that is used to improve the power of a k -sample test by adjusting for concomitant variables. If the end point is the time of survival, and some observations are right censored, the score statistic from the Cox proportional hazards model is the method that is most commonly used to test the equality of conditional hazard functions. In many situations, however, the proportional hazards model assumptions are not satisfied. Specifically, the relative risk function is not time invariant or represented as a log-linear function of the covariates. We propose an asymptotically valid k -sample test statistic to compare conditional hazard functions which does not require the assumption of proportional hazards, a parametric specification of the relative risk function or randomization of group assignment. Simulation results indicate that the performance of this statistic is satisfactory. The methodology is demonstrated on a data set in prostate cancer.  相似文献   

8.
Summary.  Competing risks situations can be encountered in many research areas such as medicine, social science and engineering. The main stream of analyses of those competing risks data has been nonparametric or semiparametric in the statistical literature. We propose a new parametric family to parameterize the cumulative incidence function completely. The new distribution is sufficiently flexible to fit various shapes of hazard patterns in survival data and increases the efficiency of the cumulative incidence estimates over the distribution-free approaches. A simple two-sample parametric test statistic is also proposed to compare the cumulative incidence functions between two groups at a given time point. The new parametric approach is illustrated by using breast cancer data sets from the National Surgical Adjuvant Breast and Bowel Project.  相似文献   

9.
The Weibull distribution is composited with Pareto model to obtain a flexible, reliable long-tailed parametric distribution for modeling unimodal failure rate data. The hazard function of the composite family accommodates decreasing and unimodal failure rates, which are separated by the boundary line of the space of shape parameter, gamma, when it equals to a known constant. The least square and maximum likelihood parameter estimation techniques are discussed. The advantages of using the proposed family are demonstrated and compared by illustrating well-known examples: guinea pigs survival time data, head and neck cancer data, and nasopharynx cancer survival data.  相似文献   

10.
This article considers nonparametric comparison of survival functions, one of the most commonly required task in survival studies. For this, several test procedures have been proposed for interval-censored failure time data in which distributions of censoring intervals are identical among different treatment groups. Sometimes the distributions may depend on treatments and thus not be the same. A class of test statistics is proposed for situations where the distributions may be different for subjects in different treatment groups. The asymptotic normality of the test statistics is established and the test procedure is evaluated by simulations, which suggest that it works well for practical situations. An illustrative example is provided.  相似文献   

11.
A unimodal hazard rate function is suggested to model a failure rate that has a relatively high rate of failure in the middle of expected life time. This unimodal hazard rate function has two shape parameters. One of the parameters indicates the location (time) of the mode and the other controls the height of the mode. In effect, these two parameters index the class of unimodal hazard rate functions. The reliability function and the failure density function of the unimodal hazard rate function are relatively uncomplicated and mathematically tractable. The properties of the unimodal hazard rate function and the failure density function are investigated. The maximum likelihood method is used for the inference concerning the two parameters and an example based on real data is presented. This unimodal hazard rate function is particularly useful when the time of the peak failure rate is of prime interest. The failure distribution provides a practical way of estimating the peak failure time.  相似文献   

12.
The proportional reversed hazards model explains the multiplicative effect of covariates on the baseline reversed hazard rate function of lifetimes. In the present study, we introduce a proportional cause-specific reversed hazards model. The proposed regression model facilitates the analysis of failure time data with multiple causes of failure under left censoring. We estimate the regression parameters using a partial likelihood approach. We provide Breslow's type estimators for the cumulative cause-specific reversed hazard rate functions. Asymptotic properties of the estimators are discussed. Simulation studies are conducted to assess their performance. We illustrate the applicability of the proposed model using a real data set.  相似文献   

13.
The random censorship model (RCM) is commonly used in biomedical science for modeling life distributions. The popular non-parametric Kaplan–Meier estimator and some semiparametric models such as Cox proportional hazard models are extensively discussed in the literature. In this paper, we propose to fit the RCM with the assumption that the actual life distribution and the censoring distribution have a proportional odds relationship. The parametric model is defined using Marshall–Olkin's extended Weibull distribution. We utilize the maximum-likelihood procedure to estimate model parameters, the survival distribution, the mean residual life function, and the hazard rate as well. The proportional odds assumption is also justified by the newly proposed bootstrap Komogorov–Smirnov type goodness-of-fit test. A simulation study on the MLE of model parameters and the median survival time is carried out to assess the finite sample performance of the model. Finally, we implement the proposed model on two real-life data sets.  相似文献   

14.
This paper deals with the extended generalized inverse Gaussian (EGIG) distribution which has more than one turning point of the failure rate for certain values of the parameters. The EGIG model is a versatile model for analysing lifetime data and has one additional parameter, δ, than the GIG model's three parameters [B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution, Springer-Verlag, New York, 1982]. For the EGIG model, the maximum-likelihood estimation of the four parameters is discussed and a score test is developed for testing the importance of the additional parameter, δ. A non-central chi-square approximation to the power of the score test is provided. Simulation studies are carried out to examine the performance of the score test and the Wald confidence intervals. Finally, an example discussed by Jorgensen [5] is provided to illustrate that the EGIG model fits the data better than the GIG of Jorgensen [5]. Three other examples are presented and the power comparisons are displayed for each.  相似文献   

15.
We develop both nonparametric and parametric methods for obtaining prediction bands for the empirical distribution function (EDF) of a future sample. These methods yield simultaneous prediction intervals for all order statistics of the future sample, and they also correspond to tests for the two-sample problem. The nonparametric prediction bands correspond to the two-sample Kolmogorov-Smirnov test and related nonparametric tests, but the parametric prediction bands correspond to entirely new parametric two-sample tests. The parametric prediction bands tend to outperform the nonparametric bands when the parametric assumptions hold, but they may have true coverage probabilities well below their nominal levels when the parametric assumptions fail. A new computational algorithm is used to obtain critical values in the nonparametric case.  相似文献   

16.
A smoothing procedure for discrete time failure data is proposed which allows for the inclusion of covariates. This purely nonparametric method is based on discrete or continuous kernel smoothing techniques that gives a compromise between the data and smoothness. The method may be used as an exploratory tool to uncover the underlying structure or as an alternative to parametric methods when prediction is the primary objective. Confidence intervals are considered and alternative techniques of cross validation based choices of smoothing parameters are investigated.  相似文献   

17.
Multivariate failure time data also referred to as correlated or clustered failure time data, often arise in survival studies when each study subject may experience multiple events. Statistical analysis of such data needs to account for intracluster dependence. In this article, we consider a bivariate proportional hazards model using vector hazard rate, in which the covariates under study have different effect on two components of the vector hazard rate function. Estimation of the parameters as well as base line hazard function are discussed. Properties of the estimators are investigated. We illustrated the method using two real life data. A simulation study is reported to assess the performance of the estimator.  相似文献   

18.
Cox (1972) proportional hazard (PH) model has been used to model failure time data in Reliability and Survival Analysis. Recently, proportional reversed hazard model has been analyzed in the literature. Sometimes, the hazard rate (or the reversed hazard rate) may not be proportional over the whole time interval, but may be proportional differently in different intervals. In order to take care of this kind of problems, in this paper, we introduce the dynamic proportional hazard rate model, and the dynamic proportional reversed hazard rate model, and study their properties for different aging classes. The closure of the models under different stochastic orders has also been studied. Examples are presented to illustrate different properties of the models.  相似文献   

19.
This paper discusses the goodness-of-fit test for the proportional odds model for K-sample interval-censored failure time data, which frequently occur in, for example, periodic follow-up survival studies. The proportional odds model has a feature that allows the ratio of two hazard functions to be monotonic and converge to one and provides an important tool for the modeling of survival data. To test the model, a procedure is proposed, which is a generalization of the method given in Dauxois and Kirmani [Dauxois JY, Kirmani SNUA (2003) Biometrika 90:913–922]. The asymptotic distribution of the procedure is established and its properties are evaluated by simulation studies  相似文献   

20.
The hazard function plays an important role in cancer patient survival studies, as it quantifies the instantaneous risk of death of a patient at any given time. Often in cancer clinical trials, unimodal hazard functions are observed, and it is of interest to detect (estimate) the turning point (mode) of hazard function, as this may be an important measure in patient treatment strategies with cancer. Moreover, when patient cure is a possibility, estimating cure rates at different stages of cancer, in addition to their proportions, may provide a better summary of the effects of stages on survival rates. Therefore, the main objective of this paper is to consider the problem of estimating the mode of hazard function of patients at different stages of cervical cancer in the presence of long-term survivors. To this end, a mixture cure rate model is proposed using the log-logistic distribution. The model is conveniently parameterized through the mode of the hazard function, in which cancer stages can affect both the cured fraction and the mode. In addition, we discuss aspects of model inference through the maximum likelihood estimation method. A Monte Carlo simulation study assesses the coverage probability of asymptotic confidence intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号